Local existence for evolution equations with nonlocal term in time and singular initial data

被引:0
|
作者
Aldryn Aparcana
Ricardo Castillo
Omar Guzmán-Rea
Miguel Loayza
机构
[1] Universidad Nacional San Luis Gonzaga,Facultad de Ciencias
[2] Universidad del Bío-Bío,Departamento de Matemática
[3] Universidade Federal de Pernambuco - UFPE,Departamento de Matemática
关键词
Nonlocal parabolic equation; Fractional heat equation; Local existence; Nonexistence; Singular initial data; 35A01; 35B33; 35K55; 35K57; 35K58; 35R05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear equation ut+(-Δ)α/2u=∫0tm(t,s)f(u(s))ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t+(-\Delta )^{\alpha /2}u=\int \limits _0^t m(t,s) f(u(s)) \mathrm{d}s \end{aligned}$$\end{document}in Ω×(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \times (0,T)$$\end{document}, where 0<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 2$$\end{document}, m is a nonnegative and measurable homogeneous function defined on K={(t,s)∈R2,0<s<t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}= \{ (t,s) \in {\mathbb {R}}^2, 0<s<t \}$$\end{document}, f is a nonnegative, continuous and nondecreasing function and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is either a bounded smooth domain or the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. Our goal is to determine conditions for the local existence and nonexistence of solutions with nonnegative initial data belonging to the space Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(\Omega )$$\end{document}, 1≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le r < \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Local existence for evolution equations with nonlocal term in time and singular initial data
    Aparcana, Aldryn
    Castillo, Ricardo
    Guzman-Rea, Omar
    Loayza, Miguel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [2] On the local existence for Hardy parabolic equations with singular initial data
    Castillo, Ricardo
    Guzman-Rea, Omar
    Loayza, Miguel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 510 (02)
  • [3] A HEAT EQUATION WITH A NONLINEAR NONLOCAL TERM IN TIME AND SINGULAR INITIAL DATA
    Quinteiro, I.
    Loayza, M.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (5-6) : 447 - 460
  • [4] Existence of mild solutions for fractional evolution equations with nonlocal initial conditions
    Chen, Pengyu
    Li, Yongxiang
    Li, Qiang
    ANNALES POLONICI MATHEMATICI, 2014, 110 (01) : 13 - 24
  • [5] Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations
    Suonan, Labudan
    Xu, Yonglin
    AIMS MATHEMATICS, 2023, 8 (10): : 24862 - 24887
  • [6] Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions
    Cao, Junfei
    Huang, Zaitang
    OPEN MATHEMATICS, 2018, 16 : 792 - 805
  • [7] Existence of strong solutions for a class of semilinear evolution equations with nonlocal initial conditions
    Pengyu Chen
    Yongxiang Li
    Hongxia Fan
    Advances in Difference Equations, 2012
  • [8] Existence of strong solutions for a class of semilinear evolution equations with nonlocal initial conditions
    Chen, Pengyu
    Li, Yongxiang
    Fan, Hongxia
    ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 9
  • [9] Existence of Mild Solutions for Semilinear Stochastic Evolution Equations With Nonlocal Initial Conditions
    Cao, Junfei
    Wu, Fengong
    Zhu, Yingrun
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (03) : 341 - 358
  • [10] Delay evolution equations with mixed nonlocal plus local initial conditions
    Vrabie, Ioan I.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (02)