Weighted korn inequalities in paraboloidal domains

被引:0
|
作者
S. A. Nazarov
机构
[1] Admiral S. O. Makarov State Naval Academy,
来源
Mathematical Notes | 1997年 / 62卷
关键词
Korn inequalities; elasticity problem; energy class; boundary value problems in unbounded domains;
D O I
暂无
中图分类号
学科分类号
摘要
A weighted Korn inequality in a domain Ω ⊂ ℝn with paraboloidal exit II to infinity is obtained. Asymptotic sharpness of the inequality is achieved by using different weight factors for the longitudinal (with respect to the axis of II) and transversal displacement vector components and by making the weight factors of the derivatives depend on the direction of differentiation. The solvability of the elasticity problem in the energy class (the closure of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C_0^\infty (\bar \Omega )^n$$ \end{document} in the norm generated by the elastic energy functional) is studied; the dimensions of the kernel and the cokerned of the corresponding operator depend on the exponents∈(−∞, 1) in the “rate of expansion” of the paraboloid II.
引用
收藏
页码:629 / 641
页数:12
相关论文
共 50 条
  • [31] ON INEQUALITIES OF KORN, FRIEDRICHS AND BABUSKAAZIZ
    HORGAN, CO
    PAYNE, LE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1983, 82 (02) : 165 - 179
  • [32] Korn Inequalities for a Reinforced Plate
    Sergey A. Nazarov
    Andrey S. Slutskij
    Guido H. Sweers
    [J]. Journal of Elasticity, 2012, 106 : 43 - 69
  • [33] Some Remarks on Korn Inequalities
    Damlamian, Alain
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (02) : 335 - 344
  • [34] Nonlinear Korn Inequalities on a Hypersurface
    Maria MALIN
    Cristinel MARDARE
    [J]. Chinese Annals of Mathematics,Series B, 2018, (03) : 513 - 534
  • [35] Nonlinear Korn Inequalities on a Hypersurface
    Malin, Maria
    Mardare, Cristinel
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (03) : 513 - 534
  • [36] Korn and Poincaré-Korn inequalities for functions with a small jump set
    Filippo Cagnetti
    Antonin Chambolle
    Lucia Scardia
    [J]. Mathematische Annalen, 2022, 383 : 1179 - 1216
  • [37] Nonlinear Korn Inequalities on a Hypersurface
    Maria Malin
    Cristinel Mardare
    [J]. Chinese Annals of Mathematics, Series B, 2018, 39 : 513 - 534
  • [38] Korn Inequalities for a Reinforced Plate
    Nazarov, Sergey A.
    Slutskij, Andrey S.
    Sweers, Guido H.
    [J]. JOURNAL OF ELASTICITY, 2012, 106 (01) : 43 - 69
  • [39] Some Remarks on Korn Inequalities
    Alain Damlamian
    [J]. Chinese Annals of Mathematics, Series B, 2018, 39 : 335 - 344
  • [40] Korn inequality on irregular domains
    Jiang, Renjin
    Kauranen, Aapo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 41 - 59