Normal forms;
Neighborhoods of complex manifolds;
Weakly negative or positive normal bundles;
Foliations;
32Q57;
32Q28;
32L10;
37F50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We construct an injective map from the set of holomorphic equivalence classes of neighborhoods M of a compact complex manifold C into Cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {C}}}^m$$\end{document} for some m<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m<\infty $$\end{document} when (TM)|C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(TM)|_C$$\end{document} is fixed and the normal bundle of C in M is either weakly negative or 2-positive.
机构:
Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, JapanKyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan