A Structure Theorem for Neighborhoods of Compact Complex Manifolds

被引:0
|
作者
Xianghong Gong
Laurent Stolovitch
机构
[1] University of Wisconsin-Madison,Department of Mathematics
[2] Université Côte d’Azur,CNRS and Laboratoire J.
[3] Parc Valrose,A. Dieudonné U.M.R. 7351
来源
关键词
Normal forms; Neighborhoods of complex manifolds; Weakly negative or positive normal bundles; Foliations; 32Q57; 32Q28; 32L10; 37F50;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an injective map from the set of holomorphic equivalence classes of neighborhoods M of a compact complex manifold C into Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^m$$\end{document} for some m<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m<\infty $$\end{document} when (TM)|C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(TM)|_C$$\end{document} is fixed and the normal bundle of C in M is either weakly negative or 2-positive.
引用
收藏
相关论文
共 50 条