Some existence and uniqueness results for logistic Choquard equations

被引:0
|
作者
G. C. Anthal
J. Giacomoni
K. Sreenadh
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Delhi,LMAP (UMR E2S UPPA CNRS 5142) Bat. IPRA
[3] Avenue de l’Université,undefined
关键词
Fractional ; -Laplacian; Logistic equation; Choquard nonlinearity; Hardy-Littlewood-Sobolev inequality; Sign-changing solutions; 35J60; 35B45; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following doubly nonlocal nonlinear logistic problem driven by the fractional p-Laplacian (-Δ)psu=f(x,u)-∫Ω|u(y)|r|x-y|αdy|u(x)|r-2u(x)inΩ,u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )_p^su = f(x,u) -\displaystyle \left( \int \limits _\Omega \frac{|u(y)|^r}{|x-y|^\alpha }dy\right) |u(x)|^{r-2}u(x)~\text { in }~ \Omega , ~u=0 ~\text { in }~ {{\mathbb {R}}}^N\setminus \Omega . \end{aligned}$$\end{document}Here Ω⊂RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega \subset {{\mathbb {R}}}^N(N\ge 2)$$\end{document} is a bounded domain with C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C^{1,1}$$\end{document} boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \in (0,1) $$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} are such that ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ps < N$$\end{document}. Also ps,α#≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#\le r<\infty $$\end{document}, where ps,α#=(2N-α)/2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#=(2N-\alpha )/2N$$\end{document}. Under suitable and general assumptions on the nonlinearity f, we study the existence, nonexistence, uniqueness, and regularity of weak solutions. As for applications, we treat cases of subdiffusive type logistic Choquard problem. We also consider in the superdiffusive case the Brezis-Nirenberg type problem with logistic Choquard and show the existence of a nontrivial solution for a suitable choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. Finally for a particular choice of f viz. f(x,t)=λtq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)=\lambda t^{q-1}$$\end{document} with 1<p<2r<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2r<q$$\end{document}, we show the existence of at least one energy nodal solution.
引用
收藏
页码:997 / 1034
页数:37
相关论文
共 50 条