Some existence and uniqueness results for logistic Choquard equations

被引:0
|
作者
G. C. Anthal
J. Giacomoni
K. Sreenadh
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Delhi,LMAP (UMR E2S UPPA CNRS 5142) Bat. IPRA
[3] Avenue de l’Université,undefined
关键词
Fractional ; -Laplacian; Logistic equation; Choquard nonlinearity; Hardy-Littlewood-Sobolev inequality; Sign-changing solutions; 35J60; 35B45; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following doubly nonlocal nonlinear logistic problem driven by the fractional p-Laplacian (-Δ)psu=f(x,u)-∫Ω|u(y)|r|x-y|αdy|u(x)|r-2u(x)inΩ,u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )_p^su = f(x,u) -\displaystyle \left( \int \limits _\Omega \frac{|u(y)|^r}{|x-y|^\alpha }dy\right) |u(x)|^{r-2}u(x)~\text { in }~ \Omega , ~u=0 ~\text { in }~ {{\mathbb {R}}}^N\setminus \Omega . \end{aligned}$$\end{document}Here Ω⊂RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega \subset {{\mathbb {R}}}^N(N\ge 2)$$\end{document} is a bounded domain with C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C^{1,1}$$\end{document} boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \in (0,1) $$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} are such that ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ps < N$$\end{document}. Also ps,α#≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#\le r<\infty $$\end{document}, where ps,α#=(2N-α)/2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#=(2N-\alpha )/2N$$\end{document}. Under suitable and general assumptions on the nonlinearity f, we study the existence, nonexistence, uniqueness, and regularity of weak solutions. As for applications, we treat cases of subdiffusive type logistic Choquard problem. We also consider in the superdiffusive case the Brezis-Nirenberg type problem with logistic Choquard and show the existence of a nontrivial solution for a suitable choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. Finally for a particular choice of f viz. f(x,t)=λtq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)=\lambda t^{q-1}$$\end{document} with 1<p<2r<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2r<q$$\end{document}, we show the existence of at least one energy nodal solution.
引用
收藏
页码:997 / 1034
页数:37
相关论文
共 50 条
  • [21] Uniqueness of positive solutions of the Choquard type equations
    Wang, Tao
    Yi, Taishan
    APPLICABLE ANALYSIS, 2017, 96 (03) : 409 - 417
  • [22] EXISTENCE AND UNIQUENESS RESULTS FOR HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (7-8) : 683 - 699
  • [23] EXISTENCE, UNIQUENESS AND CONSTRUCTIVE RESULTS FOR DELAY DIFFERENTIAL EQUATIONS
    Eloe, Paul W.
    Raffoul, Youssef N.
    Tisdell, Christopher C.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [24] Existence and uniqueness results for impulsive delay differential equations
    Ballinger, G
    Liu, XZ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 5 (1-4): : 579 - 591
  • [25] Existence and uniqueness results for fractional differential equations with uncertainty
    S Salahshour
    T Allahviranloo
    S Abbasbandy
    D Baleanu
    Advances in Difference Equations, 2012
  • [26] Existence and uniqueness of contractive solutions of some Riccati equations
    Adamjan, V
    Langer, H
    Tretter, C
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) : 448 - 473
  • [27] On Existence and Uniqueness Results for Nonsmooth Implicit Differential Equations
    You, Xiong
    Wu, Xinyuan
    Chen, Zhaoxia
    Yang, Hongli
    Fang, Yonglei
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 613 - +
  • [28] Existence and uniqueness results for fractional differential equations with uncertainty
    Salahshour, S.
    Allahviranloo, T.
    Abbasbandy, S.
    Baleanu, D.
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [29] Existence and uniqueness of solutions of some nonlinear parabolic equations
    Kovkov, DV
    DIFFERENTIAL EQUATIONS, 2003, 39 (12) : 1767 - 1774
  • [30] Existence and Uniqueness of Solutions of Some Nonlinear Parabolic Equations
    D. V. Kovkov
    Differential Equations, 2003, 39 : 1767 - 1774