Some existence and uniqueness results for logistic Choquard equations

被引:0
|
作者
G. C. Anthal
J. Giacomoni
K. Sreenadh
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Delhi,LMAP (UMR E2S UPPA CNRS 5142) Bat. IPRA
[3] Avenue de l’Université,undefined
关键词
Fractional ; -Laplacian; Logistic equation; Choquard nonlinearity; Hardy-Littlewood-Sobolev inequality; Sign-changing solutions; 35J60; 35B45; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following doubly nonlocal nonlinear logistic problem driven by the fractional p-Laplacian (-Δ)psu=f(x,u)-∫Ω|u(y)|r|x-y|αdy|u(x)|r-2u(x)inΩ,u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )_p^su = f(x,u) -\displaystyle \left( \int \limits _\Omega \frac{|u(y)|^r}{|x-y|^\alpha }dy\right) |u(x)|^{r-2}u(x)~\text { in }~ \Omega , ~u=0 ~\text { in }~ {{\mathbb {R}}}^N\setminus \Omega . \end{aligned}$$\end{document}Here Ω⊂RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega \subset {{\mathbb {R}}}^N(N\ge 2)$$\end{document} is a bounded domain with C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C^{1,1}$$\end{document} boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \in (0,1) $$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} are such that ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ps < N$$\end{document}. Also ps,α#≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#\le r<\infty $$\end{document}, where ps,α#=(2N-α)/2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#=(2N-\alpha )/2N$$\end{document}. Under suitable and general assumptions on the nonlinearity f, we study the existence, nonexistence, uniqueness, and regularity of weak solutions. As for applications, we treat cases of subdiffusive type logistic Choquard problem. We also consider in the superdiffusive case the Brezis-Nirenberg type problem with logistic Choquard and show the existence of a nontrivial solution for a suitable choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. Finally for a particular choice of f viz. f(x,t)=λtq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)=\lambda t^{q-1}$$\end{document} with 1<p<2r<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2r<q$$\end{document}, we show the existence of at least one energy nodal solution.
引用
收藏
页码:997 / 1034
页数:37
相关论文
共 50 条
  • [1] Some existence and uniqueness results for logistic Choquard equations
    Anthal, G. C.
    Giacomoni, J.
    Sreenadh, K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 997 - 1034
  • [2] Some existence and uniqueness results for a solution of a system of equations
    Khantwal, Deepak
    Pant, Rajendra
    APPLIED GENERAL TOPOLOGY, 2024, 25 (01): : 159 - 174
  • [3] Some Existence Results on a Class of Generalized Quasilinear Schrodinger Equations with Choquard Type
    Ling, Pingying
    Huang, Xianjiu
    Chen, Jianhua
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1389 - 1411
  • [4] Some Existence Results on a Class of Generalized Quasilinear Schrödinger Equations with Choquard Type
    Pingying Ling
    Xianjiu Huang
    Jianhua Chen
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1389 - 1411
  • [5] Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations
    Kahouli, Omar
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Kumar, Pushpendra
    Ben Ali, Naim
    Aloui, Ali
    SYMMETRY-BASEL, 2022, 14 (11):
  • [6] Existence and uniqueness results for polyharmonic equations
    Dalmasso, Robert
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (01): : 131 - 137
  • [7] SOME EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Marasi, H. R.
    Afshari, H.
    Zhai, C. B.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 571 - 585
  • [8] ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS
    Antontsev, Stanislav
    Chipot, Michel
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (5-6) : 401 - 419
  • [9] Existence and uniqueness results for polyharmonic equations
    Dalmasso, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) : 131 - 137
  • [10] On the existence and uniqueness of almost periodic solutions for delay Logistic equations
    Feng, CH
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 487 - 494