Multiplicative Invariants and Semigroup Algebras

被引:0
|
作者
Martin Lorenz
机构
[1] Temple University,Department of Mathematics
来源
关键词
semigroup algebra; group action; invariant theory; reflection group; root system; class groups;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group acting by automorphism on a lattice A, and hence on the group algebra S=k[A]. The algebra of G-invariants in S is called an algebra of multiplicative invariants. We present an explicit version of a result of Farkas stating that multiplicative invariants of finite reflection groups are semigroup algebras.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条
  • [31] Biflatness of semigroup algebras
    Paul Ramsden
    Semigroup Forum, 2009, 79 : 515 - 530
  • [32] Numerical semigroup algebras
    Huang, I-Chiau
    Kim, Mee-Kyoung
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1079 - 1088
  • [33] Hereditary semigroup algebras
    Jespers, E
    Wang, Q
    JOURNAL OF ALGEBRA, 2000, 229 (02) : 532 - 546
  • [34] Noetherian semigroup algebras
    Jespers, E
    Okninski, J
    JOURNAL OF ALGEBRA, 1999, 218 (02) : 543 - 562
  • [35] ON PERMUTATIVE SEMIGROUP ALGEBRAS
    NORDAHL, TE
    ALGEBRA UNIVERSALIS, 1988, 25 (03) : 322 - 333
  • [36] DERIVATIONS IN SEMIGROUP ALGEBRAS
    Alekseev, A., V
    Arutyunov, A. A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (02): : 9 - 18
  • [37] Decomposition of Semigroup Algebras
    Boehm, Janko
    Eisenbud, David
    Nitsche, Max J.
    EXPERIMENTAL MATHEMATICS, 2012, 21 (04) : 385 - 394
  • [38] Twisted Semigroup Algebras
    L. Rigal
    P. Zadunaisky
    Algebras and Representation Theory, 2015, 18 : 1155 - 1186
  • [39] SEPARABLE SEMIGROUP ALGEBRAS
    CHENG, CC
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (02) : 151 - 158
  • [40] Azumaya Semigroup Algebras
    Xiaojiang Guo
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 993 - 1004