We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
机构:
Univ Paris 13, Sorbonne Paris Cite, LAGA, UMR CNRS 7539, F-93430 Villetaneuse, FranceUniv Paris 13, Sorbonne Paris Cite, LAGA, UMR CNRS 7539, F-93430 Villetaneuse, France
Rigal, L.
Zadunaisky, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Dept Matemat, FCEN, Buenos Aires, DF, ArgentinaUniv Paris 13, Sorbonne Paris Cite, LAGA, UMR CNRS 7539, F-93430 Villetaneuse, France
机构:
Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Guo, Xiaojiang
Xi, Changchang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
机构:
School of Mathematical Science,Universiti Sains Malaysia,11800 USM,Penang,MalaysiaSchool of Mathematical Science,Universiti Sains Malaysia,11800 USM,Penang,Malaysia
Sriwulan ADJI
Rizky ROSJANUARDI
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Universitas Pcndidikan Indonesia,Jl.Dr.Setia Budhi 229,Bandung 40154,IndonesiaSchool of Mathematical Science,Universiti Sains Malaysia,11800 USM,Penang,Malaysia