共 50 条
Twisted Semigroup Algebras
被引:0
|作者:
L. Rigal
P. Zadunaisky
机构:
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源:
关键词:
Noncommutative geometry;
Quantum toric varieties;
Semigroup algebras;
Artin-Schelter;
Cohen-Macaulay;
Artin-Schelter Gorenstein;
16T20;
16E65;
16S35;
16S80;
17B37;
16S38;
14A22;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文