Twisted Semigroup Algebras

被引:0
|
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [21] Preduals of semigroup algebras
    Matthew Daws
    Hung Le Pham
    Stuart White
    Semigroup Forum, 2010, 80 : 61 - 78
  • [22] On radicals of semigroup algebras
    Sokolsky, AG
    SEMIGROUP FORUM, 1999, 59 (01) : 93 - 105
  • [24] Biflatness of semigroup algebras
    Paul Ramsden
    Semigroup Forum, 2009, 79 : 515 - 530
  • [25] Numerical semigroup algebras
    Huang, I-Chiau
    Kim, Mee-Kyoung
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1079 - 1088
  • [26] Hereditary semigroup algebras
    Jespers, E
    Wang, Q
    JOURNAL OF ALGEBRA, 2000, 229 (02) : 532 - 546
  • [27] Noetherian semigroup algebras
    Jespers, E
    Okninski, J
    JOURNAL OF ALGEBRA, 1999, 218 (02) : 543 - 562
  • [28] ON PERMUTATIVE SEMIGROUP ALGEBRAS
    NORDAHL, TE
    ALGEBRA UNIVERSALIS, 1988, 25 (03) : 322 - 333
  • [29] DERIVATIONS IN SEMIGROUP ALGEBRAS
    Alekseev, A., V
    Arutyunov, A. A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (02): : 9 - 18
  • [30] Decomposition of Semigroup Algebras
    Boehm, Janko
    Eisenbud, David
    Nitsche, Max J.
    EXPERIMENTAL MATHEMATICS, 2012, 21 (04) : 385 - 394