Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [41] An SIR Epidemic Model with Time Delay and General Nonlinear Incidence Rate
    Li, Mingming
    Liu, Xianning
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [42] GLOBAL STABILITY OF AN SIR EPIDEMIC MODEL WITH DELAY AND GENERAL NONLINEAR INCIDENCE
    McCluskey, C. Connell
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (04) : 837 - 850
  • [43] Traveling wave solutions for a diffusive age-structured SIR epidemic model
    Wu, Shi-Liang
    Chen, Linya
    Hsu, Cheng-Hsiung
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 98
  • [44] Traveling waves in an SEIR epidemic model with a general nonlinear incidence rate
    Wu, Xin
    Tian, Baochuan
    Yuan, Rong
    APPLICABLE ANALYSIS, 2020, 99 (01) : 133 - 157
  • [45] Asymptotic analysis of SIR epidemic model with nonlocal diffusion and generalized nonlinear incidence functional
    Djilali, Salih
    Chen, Yuming
    Bentout, Soufiane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 6279 - 6301
  • [46] Traveling waves for a nonlocal dispersal SIR model with delay and external supplies
    Li, Yan
    Li, Wan-Tong
    Yang, Fei-Ying
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 723 - 740
  • [47] Exponential stability of traveling waves for a nonlocal dispersal SIR model with delay
    Wu, Xin
    Ma, Zhaohai
    OPEN MATHEMATICS, 2022, 20 (01): : 1451 - 1469
  • [48] Global stability of traveling waves for a SIR model with nonlocal dispersal and delay
    Liu, Kai-Kai
    Yang, Yun-Rui
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [49] CRITICAL TRAVELING WAVE SOLUTIONS FOR A VACCINATION MODEL WITH GENERAL INCIDENCE
    Yang, Yu
    Zhou, Jinling
    Hsu, Cheng-hsiung
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1209 - 1225
  • [50] Traveling wave solutions of a nonlocal dispersal predator-prey model with spatiotemporal delay
    Zhao, Zhihong
    Li, Rui
    Zhao, Xiangkui
    Feng, Zhaosheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):