Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [21] Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission
    Wu, Kuilin
    Zhou, Kai
    MATHEMATICS, 2019, 7 (07)
  • [22] Periodic traveling waves for a diffusive SIR epidemic model with general nonlinear incidence and external supplies
    Wu, Weixin
    Teng, Zhidong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [23] Traveling Wave Solutions of a Diffusive SEIR Epidemic Model with Nonlinear Incidence Rate
    Zhao, Lin
    Zhang, Liang
    Huo, Haifeng
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 951 - 980
  • [24] TRAVELING WAVES FOR A NONLOCAL DISPERSAL EPIDEMIC MODEL
    Feiying Yang
    Runlong Qiao
    Wantong Li
    Annals of Applied Mathematics, 2014, (02) : 222 - 235
  • [25] Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission
    Wang, Jia-Bing
    Li, Wan-Tong
    Yang, Fei-Ying
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 136 - 152
  • [26] TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS
    Pan, Shuxia
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 703 - 719
  • [27] The spreading speed of an SIR epidemic model with nonlocal dispersal
    Guo, Jong-Shenq
    Poh, Amy Ai Ling
    Shimojo, Masahiko
    ASYMPTOTIC ANALYSIS, 2020, 120 (1-2) : 163 - 174
  • [28] Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model
    Ran Zhang
    Jinliang Wang
    Shengqiang Liu
    Journal of Nonlinear Science, 2021, 31
  • [29] Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model
    Zhang, Ran
    Wang, Jinliang
    Liu, Shengqiang
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (01)
  • [30] Traveling waves for SVIR epidemic model with nonlocal dispersal
    Zhang, Ran
    Liu, Shengqiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (03) : 1654 - 1682