Complex Symmetry of Invertible Composition Operators on Weighted Bergman Spaces

被引:0
|
作者
Osmar R. Severiano
机构
[1] IMECC,
来源
关键词
Complex symmetry; Composition operator; Disk automorphisms; Weighted Bergman spaces; 47B33; 30H20; 47B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the complex symmetry of composition operators Cϕf=f∘ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }f=f\circ \phi $$\end{document} induced on the weighted Bergman spaces Aβ2(D),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_{\beta }(\mathbb {D}),$$\end{document} by analytic self-maps of the unit disk. One of our main results shows that if Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\phi $$\end{document} is complex symmetric then ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} must fix a point in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. From this, we prove that if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is neither constant nor an elliptic automorphism of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} and Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} is complex symmetric then Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} and Cϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }^*$$\end{document} are cyclic operators. Moreover, by assuming ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is an elliptic automorphism of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} which not a rotation and β∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in \mathbb {N},$$\end{document} we show that Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} is not complex symmetric whenever ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} has order greater than 2(3+β).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(3+\beta ).$$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] Differences of composition operators on weighted Bergman spaces
    Lo, Ching-on
    Loh, Anthony Wai-keung
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 815 - 833
  • [32] WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES
    Li, Songxiao
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 63 - 70
  • [33] Commutators of composition operators with adjoints of composition operators on weighted Bergman spaces
    MacCluer, Barbara D.
    Narayan, Sivaram K.
    Weir, Rachel J.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (01) : 35 - 54
  • [34] Weighted Composition Operators and Differences of Composition Operators Between Weighted Bergman Spaces on the Ball
    Li, Junfeng
    Tong, Cezhong
    FILOMAT, 2022, 36 (09) : 3141 - 3154
  • [35] GENERALIZED WEIGHTED COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES
    Vasebi, Fereshteh
    Vaezi, Hamid
    MATHEMATICAL REPORTS, 2022, 24 (04): : 739 - 749
  • [36] Closed range weighted composition operators on weighted Bergman spaces
    Wolf, Elke
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (04) : 621 - 628
  • [37] GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES, II
    Zhu, Xiangling
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 1055 - 1066
  • [38] Sparse domination of weighted composition operators on weighted Bergman spaces
    Hu, Bingyang
    Li, Songxiao
    Shi, Yecheng
    Wick, Brett D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
  • [39] Compact differences of weighted composition operators on the weighted Bergman spaces
    Maocai Wang
    Xingxing Yao
    Fen Chen
    Journal of Inequalities and Applications, 2017
  • [40] Compact differences of weighted composition operators on the weighted Bergman spaces
    Wang, Maocai
    Yao, Xingxing
    Chen, Fen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,