Complex Symmetry of Invertible Composition Operators on Weighted Bergman Spaces

被引:0
|
作者
Osmar R. Severiano
机构
[1] IMECC,
来源
Complex Analysis and Operator Theory | 2020年 / 14卷
关键词
Complex symmetry; Composition operator; Disk automorphisms; Weighted Bergman spaces; 47B33; 30H20; 47B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the complex symmetry of composition operators Cϕf=f∘ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }f=f\circ \phi $$\end{document} induced on the weighted Bergman spaces Aβ2(D),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_{\beta }(\mathbb {D}),$$\end{document} by analytic self-maps of the unit disk. One of our main results shows that if Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\phi $$\end{document} is complex symmetric then ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} must fix a point in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. From this, we prove that if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is neither constant nor an elliptic automorphism of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} and Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} is complex symmetric then Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} and Cϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }^*$$\end{document} are cyclic operators. Moreover, by assuming ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is an elliptic automorphism of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} which not a rotation and β∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in \mathbb {N},$$\end{document} we show that Cϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }$$\end{document} is not complex symmetric whenever ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} has order greater than 2(3+β).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(3+\beta ).$$\end{document}
引用
收藏
相关论文
共 50 条
  • [21] Dynamics of composition operators on weighted Bergman spaces
    Zhang, Liang
    Zhou, Ze-Hua
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01): : 406 - 418
  • [22] Differences of composition operators on weighted Bergman spaces
    Ching-on Lo
    Anthony Wai-keung Loh
    Ricerche di Matematica, 2023, 72 : 815 - 833
  • [23] Weighted composition operators on Bergman spaces Aωp
    Arroussi, Hicham
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (04) : 631 - 656
  • [24] Bounded composition operators on weighted Bergman spaces
    Jones, MM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) : 650 - 667
  • [25] Composition Operators on Weighted Bergman Spaces of Polydisk
    Saeidikia, Zahra
    Abkar, Ali
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)
  • [26] Spectra of composition operators on weighted Bergman spaces
    Matthew A. Pons
    Acta Scientiarum Mathematicarum, 2019, 85 : 539 - 560
  • [27] Weighted composition operators on Hardy and Bergman spaces
    Kumar, R
    Partington, JR
    RECENT ADVANCES IN OPERATOR THEORY, OPEATOR ALGEBRAS, AND THEIR APPLICATIONS, 2005, 153 : 157 - 167
  • [28] Spectra of composition operators on weighted Bergman spaces
    Pons, Matthew A.
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (3-5): : 539 - 560
  • [29] COMPOSITION OPERATORS ON LARGE WEIGHTED BERGMAN SPACES
    KRIETE, TL
    MACCLUER, BD
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (03) : 755 - 788
  • [30] Bicomplex Weighted Bergman Spaces and Composition Operators
    Stanzin Dolkar
    Sanjay Kumar
    Advances in Applied Clifford Algebras, 2023, 33