Generalized Hybrid Fibonacci and Lucas p-numbers

被引:0
|
作者
E. Gokcen Kocer
Huriye Alsan
机构
[1] Necmettin Erbakan University,Department of Mathematics and Computer Sciences, Faculty of Science
关键词
Fibonacci ; -numbers; Lucas ; -numbers; Hybrid numbers; 11B37; 11B39; 11E88; 15A66;
D O I
暂无
中图分类号
学科分类号
摘要
The hybrid numbers are a generalization of complex, hyperbolic and dual numbers. Until this time, many researchers have studied related to hybrid numbers. In this paper, using the generalized Fibonacci and Lucas p-numbers, we introduce the generalized hybrid Fibonacci and Lucas p-numbers. Also, we give some special cases and algebraic properties of the generalized hybrid Fibonacci and Lucas p-numbers.
引用
收藏
页码:948 / 955
页数:7
相关论文
共 50 条
  • [1] Generalized Hybrid Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Alsan, Huriye
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 948 - 955
  • [2] Incomplete Fibonacci and Lucas p-numbers
    TasciA, Dursun
    Firengiz, Mirac Cetin
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1763 - 1770
  • [3] The continuous functions for the Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 1014 - 1025
  • [4] GAUSSIAN FIBONACCI AND GAUSSIAN LUCAS p-NUMBERS
    Asci, Mustafa
    Gurel, Esref
    [J]. ARS COMBINATORIA, 2017, 132 : 389 - 402
  • [5] Theory of Binet formulas for Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1162 - 1177
  • [6] On the m-extension of the Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    Stakhov, Alexey
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1890 - 1906
  • [7] A STUDY ON THE FIBONACCI p-NUMBERS
    Halici, Serpil
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (M09): : 106 - 111
  • [8] Complex Fibonacci p-Numbers
    Tasci, Dursun
    Yalcin, Feyza
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (03): : 213 - 218
  • [9] The Binet formula, sums and representations of generalized Fibonacci p-numbers
    Kilic, Emrah
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 701 - 711
  • [10] Dual complex Fibonacci p-numbers
    Prasad, B.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 145