On the m-extension of the Fibonacci and Lucas p-numbers

被引:34
|
作者
Kocer, E. Gokcen [1 ]
Tuglu, Naim [2 ]
Stakhov, Alexey [3 ]
机构
[1] Selcuk Univ, Fac Educ, TR-42099 Meram Konya, Turkey
[2] Gazi Univ, Fac Arts & Sci, Dept Math, TR-06500 Teknikokullar, Turkey
[3] Int Club Golden Sect 6 McCreary Trail, Bolton, ON L7E 2C8, Canada
关键词
GOLDEN; SPACE; SET; MATHEMATICS; DIMENSION;
D O I
10.1016/j.chaos.2007.09.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define the m-extension of the Fibonacci and Lucas p-numbers (p >= 0 is integer and m >= 0 is real number) from which, specifying p and in, classic Fibonacci and Lucas numbers (p = 1, m = 1), Pell and Pell-Lucas numbers (p = 1, m = 2), Fibonacci and Lucas p-numbers (m = 1), Fibonacci in-numbers (p = 1), Pell and Pell-Lucas p-numbers (m = 2) are obtained. Afterwards, we obtain the continuous functions for the m-extension of the Fibonacci and Lucas p-numbers using the generalized Binet formulas. Also we introduce in the article a new class of mathematical constants - the Golden (p,m)-Proportions, which are a wide generalization of the classical golden mean, the golden p-proportions and the golden m-proportions. The article is of fundamental interest for theoretical physics where Fibonacci numbers and the golden mean are used widely. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1890 / 1906
页数:17
相关论文
共 50 条
  • [1] Coding theory on the m-extension of the Fibonacci p-numbers
    Basu, Manjusri
    Prasad, Bandhu
    CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2522 - 2530
  • [2] Coding theory on the m-extension of the Fibonacci p-numbers (vol 42, pg 2522, 2009)
    Prasad, Bandhu
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [3] Incomplete Fibonacci and Lucas p-numbers
    TasciA, Dursun
    Firengiz, Mirac Cetin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1763 - 1770
  • [4] The m-Extension of Fibonacci and Lucas p-Difference Sequences
    Kome, Cahit
    Yazlik, Yasin
    FILOMAT, 2019, 33 (19) : 6187 - 6194
  • [5] Generalized Hybrid Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Alsan, Huriye
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 948 - 955
  • [6] GAUSSIAN FIBONACCI AND GAUSSIAN LUCAS p-NUMBERS
    Asci, Mustafa
    Gurel, Esref
    ARS COMBINATORIA, 2017, 132 : 389 - 402
  • [7] Generalized Hybrid Fibonacci and Lucas p-numbers
    E. Gokcen Kocer
    Huriye Alsan
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 948 - 955
  • [8] The continuous functions for the Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 1014 - 1025
  • [9] CODING THEORY ON THE (m, t)-EXTENSION OF THE FIBONACCI p-NUMBERS
    Basu, Manjusri
    Prasad, Bandhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 259 - 267
  • [10] Theory of Binet formulas for Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1162 - 1177