On the m-extension of the Fibonacci and Lucas p-numbers

被引:34
|
作者
Kocer, E. Gokcen [1 ]
Tuglu, Naim [2 ]
Stakhov, Alexey [3 ]
机构
[1] Selcuk Univ, Fac Educ, TR-42099 Meram Konya, Turkey
[2] Gazi Univ, Fac Arts & Sci, Dept Math, TR-06500 Teknikokullar, Turkey
[3] Int Club Golden Sect 6 McCreary Trail, Bolton, ON L7E 2C8, Canada
关键词
GOLDEN; SPACE; SET; MATHEMATICS; DIMENSION;
D O I
10.1016/j.chaos.2007.09.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define the m-extension of the Fibonacci and Lucas p-numbers (p >= 0 is integer and m >= 0 is real number) from which, specifying p and in, classic Fibonacci and Lucas numbers (p = 1, m = 1), Pell and Pell-Lucas numbers (p = 1, m = 2), Fibonacci and Lucas p-numbers (m = 1), Fibonacci in-numbers (p = 1), Pell and Pell-Lucas p-numbers (m = 2) are obtained. Afterwards, we obtain the continuous functions for the m-extension of the Fibonacci and Lucas p-numbers using the generalized Binet formulas. Also we introduce in the article a new class of mathematical constants - the Golden (p,m)-Proportions, which are a wide generalization of the classical golden mean, the golden p-proportions and the golden m-proportions. The article is of fundamental interest for theoretical physics where Fibonacci numbers and the golden mean are used widely. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1890 / 1906
页数:17
相关论文
共 50 条
  • [11] EXTENSION OF LUCAS p-NUMBERS IN INFORMATION THEORY
    Prasad, Bandhu
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (04): : 541 - 556
  • [12] A STUDY ON THE FIBONACCI p-NUMBERS
    Halici, Serpil
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (M09): : 106 - 111
  • [13] Complex Fibonacci p-Numbers
    Tasci, Dursun
    Yalcin, Feyza
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (03): : 213 - 218
  • [14] Dual complex Fibonacci p-numbers
    Prasad, B.
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [15] On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices
    Kilic, E.
    Stakhov, A. P.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2210 - 2221
  • [16] ON THE CONNECTIONS BETWEEN PADOVAN NUMBERS AND FIBONACCI p-NUMBERS
    Erdag, Ozgur
    Deveci, Omur
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3A): : 507 - 521
  • [17] On the connections between Pell numbers and Fibonacci p-numbers
    Shannon, Anthony G.
    Erdag, Ozgur
    Deveci, Omur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (01) : 148 - 160
  • [18] The Fibonacci p-numbers and Pascal's triangle
    Kuhapatanakul, Kantaphon
    COGENT MATHEMATICS, 2016, 3
  • [19] On the Properties of Balancing and Lucas-Balancing p-Numbers
    Behera, Adikanda
    Ray, Prasanta Kumar
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (02): : 147 - 163
  • [20] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70