Generalized Hybrid Fibonacci and Lucas p-numbers

被引:0
|
作者
E. Gokcen Kocer
Huriye Alsan
机构
[1] Necmettin Erbakan University,Department of Mathematics and Computer Sciences, Faculty of Science
关键词
Fibonacci ; -numbers; Lucas ; -numbers; Hybrid numbers; 11B37; 11B39; 11E88; 15A66;
D O I
暂无
中图分类号
学科分类号
摘要
The hybrid numbers are a generalization of complex, hyperbolic and dual numbers. Until this time, many researchers have studied related to hybrid numbers. In this paper, using the generalized Fibonacci and Lucas p-numbers, we introduce the generalized hybrid Fibonacci and Lucas p-numbers. Also, we give some special cases and algebraic properties of the generalized hybrid Fibonacci and Lucas p-numbers.
引用
收藏
页码:948 / 955
页数:7
相关论文
共 50 条
  • [21] ON GENERALIZED FIBONACCI AND LUCAS NUMBERS BY MATRIX METHODS
    Cerda-Morales, Gamaliel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (02): : 173 - 179
  • [22] MORE PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Namarneh, Tareq
    Al-Kateeb, Ala'a
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2023, 35 (02) : 129 - 135
  • [23] Sieve formulas for the generalized Fibonacci and Lucas numbers
    Strazdins, I
    FIBONACCI QUARTERLY, 1999, 37 (04): : 361 - 366
  • [24] SUM FORMULAE OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Cerin, Zvonko
    Bitim, Bahar Demirturk
    Keskin, Refik
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 199 - 210
  • [25] Sums of products of generalized Fibonacci and Lucas numbers
    Kilic, E.
    Prodinger, H.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 17 - 25
  • [26] Combinatorial Sums of Generalized Fibonacci and Lucas Numbers
    Uslu, K.
    Taskara, N.
    Gulec, H. H.
    ARS COMBINATORIA, 2011, 99 : 139 - 147
  • [27] Sums of products of generalized Fibonacci and Lucas numbers
    Belbachir, Hacene
    Bencherif, Farid
    ARS COMBINATORIA, 2013, 110 : 33 - 43
  • [28] SUMS OF PRODUCTS OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Cerin, Zvonko
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 247 - 258
  • [29] Some Properties of the Generalized Fibonacci and Lucas Numbers
    Djordjevic, Gospava B.
    Djordjevic, Snezana S.
    FILOMAT, 2020, 34 (08) : 2655 - 2665
  • [30] Some identities for generalized Fibonacci and Lucas numbers
    Szynal-Liana, Anetta
    Wloch, Iwona
    Liana, Miroslaw
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 324 - 328