Unlikely intersections and the Chabauty–Kim method over number fields

被引:0
|
作者
Netan Dogra
机构
[1] King’s College London,
来源
Mathematische Annalen | 2024年 / 389卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Chabauty–Kim method is a tool for finding the integral or rational points on varieties over number fields via certain transcendental p-adic analytic functions arising from certain Selmer schemes associated to the unipotent fundamental group of the variety. In this paper we establish several foundational results on the Chabauty–Kim method for curves over number fields. The two main ingredients in the proof of these results are an unlikely intersection result for zeroes of iterated integrals, and a careful analysis of the intersection of the Selmer scheme of the original curve with the unipotent Albanese variety of certain Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}_p $$\end{document}-subvarieties of the restriction of scalars of the curve. The main theorem also gives a partial answer to a question of Siksek on Chabauty’s method over number fields, and an explicit counterexample is given to the strong form of Siksek’s question.
引用
收藏
页码:1 / 62
页数:61
相关论文
共 50 条
  • [41] Maximal order codes over number fields
    Maire, Christian
    Oggier, Frederique
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (07) : 1827 - 1858
  • [42] On the linear independence of numbers over number fields
    Bedulev, EV
    MATHEMATICAL NOTES, 1998, 64 (3-4) : 440 - 449
  • [43] ON θ-CONGRUENT NUMBERS OVER REAL NUMBER FIELDS
    Das, Shamik
    Saikia, Anupam
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 218 - 229
  • [44] DIOPHANTINE SETS OF POLYNOMIALS OVER NUMBER FIELDS
    Demeyer, Jeroen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) : 2715 - 2728
  • [45] FORMS OF DIFFERING DEGREES OVER NUMBER FIELDS
    Frei, Christopher
    Madritsch, Manfred
    MATHEMATIKA, 2017, 63 (01) : 92 - 123
  • [46] On the distribution of Ramanujan sums over number fields
    Chaubey, Sneha
    Goel, Shivani
    RAMANUJAN JOURNAL, 2023, 61 (03): : 813 - 837
  • [47] Point counting for foliations over number fields
    Binyamini, Gal
    FORUM OF MATHEMATICS PI, 2022, 10
  • [48] Characters of algebraic groups over number fields
    Bekka, Bachir
    Francini, Camille
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (04) : 1119 - 1164
  • [49] CUBIC FORMS OVER ALGEBRAIC NUMBER FIELDS
    RYAVEC, C
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 323 - &
  • [50] Metric Mahler measures over number fields
    C. L. Samuels
    Acta Mathematica Hungarica, 2018, 154 : 105 - 123