Unlikely intersections and the Chabauty–Kim method over number fields

被引:0
|
作者
Netan Dogra
机构
[1] King’s College London,
来源
Mathematische Annalen | 2024年 / 389卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Chabauty–Kim method is a tool for finding the integral or rational points on varieties over number fields via certain transcendental p-adic analytic functions arising from certain Selmer schemes associated to the unipotent fundamental group of the variety. In this paper we establish several foundational results on the Chabauty–Kim method for curves over number fields. The two main ingredients in the proof of these results are an unlikely intersection result for zeroes of iterated integrals, and a careful analysis of the intersection of the Selmer scheme of the original curve with the unipotent Albanese variety of certain Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}_p $$\end{document}-subvarieties of the restriction of scalars of the curve. The main theorem also gives a partial answer to a question of Siksek on Chabauty’s method over number fields, and an explicit counterexample is given to the strong form of Siksek’s question.
引用
收藏
页码:1 / 62
页数:61
相关论文
共 50 条
  • [1] Unlikely intersections and the Chabauty-Kim method over number fields
    Dogra, Netan
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 1 - 62
  • [2] Explicit Chabauty over number fields
    Siksek, Samir
    ALGEBRA & NUMBER THEORY, 2013, 7 (04) : 765 - 793
  • [3] Explicit quadratic Chabauty over number fields
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Bianchi, Francesca
    Mueller, J. Steffen
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 185 - 232
  • [4] GEOMETRIC QUADRATIC CHABAUTY OVER NUMBER FIELDS
    Coupek, Pavel
    Lilienfeldt, David T. -B. G.
    Xiao, Luciena X.
    Yao, Zijian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (04) : 2573 - 2613
  • [5] Explicit quadratic Chabauty over number fields
    Jennifer S. Balakrishnan
    Amnon Besser
    Francesca Bianchi
    J. Steffen Müller
    Israel Journal of Mathematics, 2021, 243 : 185 - 232
  • [6] UNLIKELY INTERSECTIONS OVER FINITE FIELDS: POLYNOMIAL ORBITS IN SMALL SUBGROUPS
    Merai, Laszlo
    Shparlinski, Igor E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (02) : 1065 - 1073
  • [7] ON CLASS NUMBER RELATIONS AND INTERSECTIONS OVER FUNCTION FIELDS
    Guo, Jia-Wei
    Wei, Fu-Tsun
    DOCUMENTA MATHEMATICA, 2022, 27 : 1321 - 1368
  • [8] Weight filtrations on Selmer schemes and the effective Chabauty-Kim method
    Betts, L. Alexander
    COMPOSITIO MATHEMATICA, 2023, 159 (07) : 1531 - 1605
  • [9] Unlikely Intersections in Poincare Biextensions over Elliptic Schemes
    Bertrand, D.
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2013, 54 (3-4) : 365 - 375
  • [10] M0, 5: Toward the Chabauty-Kim method in higher dimensions
    Dan-Cohen, Ishai
    Jarossay, David
    MATHEMATIKA, 2023, 69 (04) : 1011 - 1059