CuO-doping effect on the optical properties (linear/linear terrace) and mechanical and acoustic features of lead borate glasses

被引:0
|
作者
Mehdi Asri
Maria Ahmadi
Vahid Zanganeh
机构
[1] Gonbad Kavous University,Department of Physics, Faculty of Basic Science
[2] Golestan University,Department of Physics, Faculty of Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we investigate the optical (linear/nonlinear) properties, mechanical characteristics, and acoustical behavior of lead borate glasses with a composition of 10ZnO–40 B2O3–(50-x) Pb3O4–xCuO, where x represents the varying concentrations of CuO (x = 0, 1, 2, 3, 5). The refractive index values, denoted as n, ranged from 2.533 for the ZBPC0 sample to 2.895 for the ZBPC4 sample. Estimations were conducted to determine the molar refraction, molar polarizability, reflection loss, and optical transmission of the samples. In the investigated glasses, both Rm (ranging from 41.855 to 43.657 cm3/mol) and αm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{m}$$\end{document} (ranging from 1.659×10-23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-23}$$\end{document} to 1.730 ×10-23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-23}$$\end{document}cm3) exhibit similar behavior. The metallization (M) varied from 0.356 to 0.288, while the transmission coefficient (T) decreased from 0.683 to 0.618. The dielectric constant (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}) changed from 6.418 to 8.381, while optical electronegativity (χ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{*}$$\end{document}) decreased from 0.682 to 0448, and linear dielectric susceptibility (χ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{1}$$\end{document}) varied from 0.431 to 0.587. The nonlinear optical susceptibility (χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{3}$$\end{document}) changed from 0.587 ×10-11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-11}$$\end{document} to 2.024 ×10-11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-11}$$\end{document} esu, while the nonlinear refraction index varied from 0.874 ×10-10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-10}$$\end{document} to 2.636 ×10-10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-10}$$\end{document} esu. The decrease in the values of M indicates that the glass samples are suitable for use in nonlinear applications, and they exhibit insulating properties. Additionally, a proportional relationship between χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{3}$$\end{document} and n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}_{2}$$\end{document} in glass samples was observed in the glass samples. Also, the elastic moduli values, including Young’s modulus and Bulk modulus, ranged from 322.84 to 337.12 (GPa), 293.76 to 304.96 (GPa), respectively. These results suggest that ZBPC glasses possess favorable properties for optical applications. Lastly, this study provides valuable insights into the structural characteristics of the glass samples.
引用
收藏
相关论文
共 50 条
  • [31] The effect of cobalt/copper ions on the structural, thermal, optical, and emission properties of erbium zinc lead borate glasses
    Taha, Eman O. O.
    Saeed, Aly
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] The effect of cobalt/copper ions on the structural, thermal, optical, and emission properties of erbium zinc lead borate glasses
    Eman O. Taha
    Aly Saeed
    Scientific Reports, 13
  • [33] Study of vibrational spectroscopy, linear and nonlinear optical properties of borate-modified tellurium-silica-bismuthate glasses
    Berwal, Neelam
    Ahlawat, N.
    Mohan, D.
    Ohlan, Anil
    Punia, R.
    Kishore, N.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) : 1643 - 1652
  • [34] Effect of Sr2+ doping on the linear and nonlinear optical properties of ZnO nanostructures
    Rahulan, K. Mani
    Sahoo, Trilochan
    Flower, N. Angeline Little
    Kokila, I. Phebe
    Vinitha, G.
    Sujatha, R. Annie
    OPTICS AND LASER TECHNOLOGY, 2019, 109 : 313 - 318
  • [35] Effect of Li doping on the structural, linear and nonlinear optical properties of NiO thin films
    Laib, Abdellatif
    Benhaoua, Atmane
    Ayachi, Mohammed Lakhdar
    Laouini, Salah Eddine
    Tedjani, Mohammed Laid
    FERROELECTRICS, 2022, 599 (01) : 186 - 200
  • [36] Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses
    Yousef, E.
    Hotzel, M.
    Ruessel, C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (04) : 333 - 338
  • [37] Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass
    Ibrahim, A. M.
    Hammad, Ahmed H.
    Abdelghany, A. M.
    Rabie, G. O.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2018, 495 : 67 - 74
  • [38] Section 4. Linear optical and mechanical properties of glasses: Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses
    Dept. of Mat. Science and Technology, Grad. School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
    不详
    J Alloys Compd, 1 (187-191):
  • [39] Phosphorus doping effect on linear and nonlinear optical properties of Si/SiO2 multilayers
    Zhang, Pei
    Zhang, Xiaowei
    Xu, Shuo
    Lu, Peng
    Tan, Dameng
    Xu, Jun
    Wang, Fengqiu
    Jiang, Liying
    Chen, Kunji
    OPTICAL MATERIALS EXPRESS, 2017, 7 (02): : 304 - 312
  • [40] Effect of Te on linear and non-linear optical properties of new quaternary Ge-Se-Sb-Te chalcogenide glasses
    Neha Sharma
    Sunanda Sharda
    S. C. Katyal
    Vineet Sharma
    Pankaj Sharma
    Electronic Materials Letters, 2014, 10 : 101 - 106