CuO-doping effect on the optical properties (linear/linear terrace) and mechanical and acoustic features of lead borate glasses

被引:0
|
作者
Mehdi Asri
Maria Ahmadi
Vahid Zanganeh
机构
[1] Gonbad Kavous University,Department of Physics, Faculty of Basic Science
[2] Golestan University,Department of Physics, Faculty of Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we investigate the optical (linear/nonlinear) properties, mechanical characteristics, and acoustical behavior of lead borate glasses with a composition of 10ZnO–40 B2O3–(50-x) Pb3O4–xCuO, where x represents the varying concentrations of CuO (x = 0, 1, 2, 3, 5). The refractive index values, denoted as n, ranged from 2.533 for the ZBPC0 sample to 2.895 for the ZBPC4 sample. Estimations were conducted to determine the molar refraction, molar polarizability, reflection loss, and optical transmission of the samples. In the investigated glasses, both Rm (ranging from 41.855 to 43.657 cm3/mol) and αm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{m}$$\end{document} (ranging from 1.659×10-23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-23}$$\end{document} to 1.730 ×10-23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-23}$$\end{document}cm3) exhibit similar behavior. The metallization (M) varied from 0.356 to 0.288, while the transmission coefficient (T) decreased from 0.683 to 0.618. The dielectric constant (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}) changed from 6.418 to 8.381, while optical electronegativity (χ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{*}$$\end{document}) decreased from 0.682 to 0448, and linear dielectric susceptibility (χ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{1}$$\end{document}) varied from 0.431 to 0.587. The nonlinear optical susceptibility (χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{3}$$\end{document}) changed from 0.587 ×10-11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-11}$$\end{document} to 2.024 ×10-11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-11}$$\end{document} esu, while the nonlinear refraction index varied from 0.874 ×10-10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-10}$$\end{document} to 2.636 ×10-10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times {10}^{-10}$$\end{document} esu. The decrease in the values of M indicates that the glass samples are suitable for use in nonlinear applications, and they exhibit insulating properties. Additionally, a proportional relationship between χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi }^{3}$$\end{document} and n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}_{2}$$\end{document} in glass samples was observed in the glass samples. Also, the elastic moduli values, including Young’s modulus and Bulk modulus, ranged from 322.84 to 337.12 (GPa), 293.76 to 304.96 (GPa), respectively. These results suggest that ZBPC glasses possess favorable properties for optical applications. Lastly, this study provides valuable insights into the structural characteristics of the glass samples.
引用
收藏
相关论文
共 50 条
  • [21] Effect of Er doping on linear and nonlinear optical properties of NiO films
    Shkir, Mohd.
    Khan, Z. R.
    Sayed, M. A.
    Chandekar, Kamlesh V.
    Khan, Aslam
    Kumar, Ashwani
    Jowhari, Mohammed A.
    AlFaify, S.
    CHINESE JOURNAL OF PHYSICS, 2021, 72 : 547 - 557
  • [22] Compositional dependence of transparency, linear and non-linear optical parameters, and radiation shielding properties in lanthanum, iron and calcium borate glasses
    Sadeq, M. S.
    Sayyed, M. I.
    Abdo, M. A.
    Ali, H. Elhosiny
    Mahmoud, Abd El-razek
    Ahmed, H. A.
    RADIATION PHYSICS AND CHEMISTRY, 2023, 212
  • [23] Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses
    Hosam M. Gomaa
    Ahmad S. Abu-Khadra
    H. Algarni
    I. S. Yahia
    H. Y. Zahran
    A. M. Abdel-Ghany
    Journal of the Australian Ceramic Society, 2023, 59 : 343 - 353
  • [24] Effect of CuO Nanoparticles on Linear and Nonlinear Optical Properties of Polymer/MgO Nanocomposites
    Hasan, Wasan K.
    Mahdi, Jassim T.
    Hameed, Ammar S.
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2019, 50 (04): : 279 - 291
  • [25] Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses
    Gomaa, Hosam M. M.
    Abu-Khadra, Ahmad S. S.
    Algarni, H.
    Yahia, I. S.
    Zahran, H. Y.
    Abdel-Ghany, A. M.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2023, 59 (02) : 343 - 353
  • [26] Effect of CuO nanoparticles on linear and nonlinear optical properties of polymer/MgO nanocomposites
    Hasan, Wasan K.
    Mahdi, Jassim T.
    Hameed, Ammar S.
    Nonlinear Optics Quantum Optics, 2019, 50 (04): : 279 - 291
  • [27] Effect of silver iodide (AgI) on structural and optical properties of cobalt doped lead-borate glasses
    Abu-Khadra, Ahmad S.
    Taha, Ashraf M.
    Abdel-Ghany, A. M.
    Abul-Magd, Ashraf A.
    CERAMICS INTERNATIONAL, 2021, 47 (18) : 26271 - 26279
  • [28] Effect of metal and semiconducting nanoparticles on the optical properties of Dy3+ ions in lead borate glasses
    Mallur, Saisudha B.
    Ooi, Hio Giap
    Ferrell, Stewart K.
    Babu, Panakkattu K.
    MATERIALS RESEARCH BULLETIN, 2017, 92 : 52 - 64
  • [29] Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses
    Srivastava, P
    Rai, SB
    Rai, DK
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 368 (1-2) : 1 - 7
  • [30] Study of vibrational spectroscopy, linear and nonlinear optical properties of borate-modified tellurium–silica–bismuthate glasses
    Neelam Berwal
    N. Ahlawat
    D. Mohan
    Anil Ohlan
    R. Punia
    N. Kishore
    Indian Journal of Physics, 2020, 94 : 1643 - 1652