Point Interactions in One Dimension and Holonomic Quantum Fields

被引:0
|
作者
Oleg Lisovyy
机构
[1] Bogolyubov Institute for Theoretical Physics,School of Theoretical Physics
[2] Dublin Institute for Advanced Studies,undefined
来源
关键词
point interactions; Schroedinger operators; tau functions; 34B10; 34M55;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a family of quantum fields, associated to δ-interactions in one dimension. These fields are analogous to holonomic quantum fields of Sato et al. in Holonomic quantum fields I–V (Publ. RIMS, Kyoto University, 14: 223–267, 1978; 15: 201–278, 1979; 15: 577–629, 1979; 15: 871-972, 1979; 16: 531–584, 1979). Corresponding field operators belong to an infinite-dimensional representation of the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{R})$$\end{document} in the Fock space of ordinary harmonic oscillator. We compute form factors of such fields and their correlation functions, which are related to the determinants of Schroedinger operators with a finite number of point interactions. It is also shown that these determinants coincide with tau functions, obtained through the trivialization of the det*-bundle over a Grassmannian associated to a family of Schroedinger operators.
引用
收藏
页码:63 / 81
页数:18
相关论文
共 50 条
  • [1] Point interactions in one dimension and holonomic quantum fields
    Lisovyy, Oleg
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (01) : 63 - 81
  • [2] Gauge fields, point interactions and few-body problems in one dimension
    Albeverio, S
    Fei, SM
    Kurasov, P
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 53 (03) : 363 - 370
  • [3] ON POINT INTERACTIONS IN ONE-DIMENSION
    ALBEVERIO, S
    GESZTESY, F
    HOEGHKROHN, R
    KIRSCH, W
    JOURNAL OF OPERATOR THEORY, 1984, 12 (01) : 101 - 126
  • [4] Schrodinger operator with point interactions in one dimension
    Mikhailets, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 617 - 618
  • [5] Schrodinger operator with point interactions in one dimension
    Z Angew Math Mech ZAMM, Suppl 2 (617):
  • [6] A NEW CLASS OF POINT INTERACTIONS IN ONE DIMENSION
    CHERNOFF, PR
    HUGHES, RJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) : 97 - 117
  • [7] Deconfined quantum critical point in one dimension
    Roberts, Brenden
    Jiang, Shenghan
    Motrunich, Olexei I.
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [8] PT-invariant point interactions in one dimension
    Coutinho, FAB
    Nogami, Y
    Tomio, L
    Toyama, FM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : L519 - L522
  • [9] Energy-dependent point interactions in one dimension
    Coutinho, FAB
    Nogami, Y
    Tomio, L
    Toyama, FM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4989 - 4998
  • [10] Symmetry, duality, and anholonomy of point interactions in one dimension
    Cheon, T
    Fülöp, T
    Tsutsui, I
    ANNALS OF PHYSICS, 2001, 294 (01) : 1 - 23