Stability and numerical analysis of the generalised time-fractional Cattaneo model for heat conduction in porous media

被引:0
|
作者
Lalit Mohan
Amit Prakash
机构
[1] National Institute of Technology,Department of Mathematics
来源
The European Physical Journal Plus | / 138卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This work investigates the generalised time-fractional Cattaneo model. The homotopy perturbation transform technique is used to get the numerical solution of this model. The stability is analysed using the Lyapunov function, also the error analysis is discussed. Finally, the effectiveness of the proposed technique is illustrated by calculating the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} error and comparing it with the existing techniques.
引用
收藏
相关论文
共 50 条
  • [41] Numerical study of anomalous heat conduction in absorber plate of a solar collector using time-fractional single-phase-lag model
    Mozafarifard, Milad
    Azimi, Aziz
    Sobhani, Hossien
    Smaisim, Ghassan Fadhil
    Toghraie, Davood
    Rahmani, Maedeh
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 34
  • [42] Numerical investigation with stability analysis of time-fractional Korteweg-de Vries equations
    Ullah, Saif
    Butt, A. I. K.
    Aish Buhader, Anum
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 3111 - 3126
  • [43] The Convergence Analysis of the Numerical Calculation to Price the Time-Fractional Black–Scholes Model
    H. Mesgarani
    M. Bakhshandeh
    Y. Esmaeelzade Aghdam
    J. F. Gómez-Aguilar
    Computational Economics, 2023, 62 : 1845 - 1856
  • [44] A new time and spatial fractional heat conduction model for Maxwell nanofluid in porous medium
    Zhang, Mengchen
    Shen, Ming
    Liu, Fawang
    Zhang, Hongmei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1621 - 1636
  • [45] A closure model for transient heat conduction in porous media
    Hsu, CT
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (03): : 733 - 739
  • [46] A SOLUTION TO THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A MULTI-LAYER SLAB
    Siedlecka, Urszula
    Kukla, Stanislaw
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (03) : 95 - 102
  • [47] Numerical simulation of electromagnetic heating process of biological tissue via time-fractional Cattaneo transfer equation
    Li, Hua
    Fan, Zhoutian
    Nan, Qun
    Cheng, Yanyan
    JOURNAL OF THERMAL BIOLOGY, 2020, 94
  • [48] Testing Stability of FDTD in Media Described by Time-Fractional Constitutive Relations
    Trofimowicz, Damian
    Stefanski, Tomasz P.
    Pietruszka, Piotr
    Gulgowski, Jacek
    2024 25TH INTERNATIONAL MICROWAVE AND RADAR CONFERENCE, MIKON 2024, 2024, : 137 - 142
  • [49] Numerical Schemes for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Model in a Double-Layered Nanoscale Thin Film
    Ji, Cui-cui
    Dai, Weizhong
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1767 - 1800
  • [50] Numerical Schemes for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Model in a Double-Layered Nanoscale Thin Film
    Cui-cui Ji
    Weizhong Dai
    Zhi-zhong Sun
    Journal of Scientific Computing, 2019, 81 : 1767 - 1800