Stability and numerical analysis of the generalised time-fractional Cattaneo model for heat conduction in porous media

被引:0
|
作者
Lalit Mohan
Amit Prakash
机构
[1] National Institute of Technology,Department of Mathematics
来源
The European Physical Journal Plus | / 138卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This work investigates the generalised time-fractional Cattaneo model. The homotopy perturbation transform technique is used to get the numerical solution of this model. The stability is analysed using the Lyapunov function, also the error analysis is discussed. Finally, the effectiveness of the proposed technique is illustrated by calculating the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} error and comparing it with the existing techniques.
引用
收藏
相关论文
共 50 条
  • [21] A new regularization for time-fractional backward heat conduction problem
    Nair, M. Thamban
    Danumjaya, P.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (01): : 41 - 56
  • [22] Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation model
    Madhukar, Amit
    Park, Yeonsoo
    Kim, Woojae
    Sunaryanto, Hans Julian
    Berlin, Richard
    Chamorro, Leonardo P.
    Bentsman, Joseph
    Ostoja-Starzewski, Martin
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (160)
  • [23] Generalized boundary conditions for time-fractional heat conduction equation
    Povstenko, Yuriy
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [24] EXACT SOLUTIONS OF TIME-FRACTIONAL HEAT CONDUCTION EQUATION BY THE FRACTIONAL COMPLEX TRANSFORM
    Li, Zheng-Biao
    Zhu, Wei-Hong
    He, Ji-Huan
    THERMAL SCIENCE, 2012, 16 (02): : 335 - 338
  • [25] An efficient hybrid approach for numerical study of two-dimensional time-fractional Cattaneo model with Riesz distributed-order space-fractional operator along with stability analysis
    Derakhshan, M. H.
    Mortazavifar, S. L.
    Veeresha, P.
    Gomez-Aguilar, J. F.
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [26] The Cattaneo-type time fractional heat conduction equation for laser heating
    Qi, Hai-Tao
    Xu, Huan-Ying
    Guo, Xin-Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 824 - 831
  • [27] Lattice Boltzmann model for incompressible flows through porous media with time-fractional effects
    Ren, Junjie
    Lei, Hao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [28] Theory and simulation of time-fractional fluid diffusion in porous media
    Carcione, Jose M.
    Sanchez-Sesma, Francisco J.
    Luzon, Francisco
    Perez Gavilan, Juan J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
  • [29] Time-fractional characterization of brine reaction and precipitation in porous media
    Xu, Jianping
    Jiang, Guancheng
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [30] An improved heat conduction model with Riesz fractional Cattaneo-Christov flux
    Liu, Lin
    Zheng, Liancun
    Liu, Fawang
    Zhang, Xinxin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 1191 - 1197