Some results concerning partitions with designated summands

被引:0
|
作者
Shane Chern
Michael D. Hirschhorn
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] UNSW Sydney,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2021年 / 54卷
关键词
Partitions with designated summands; Tagged parts; Congruences; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
Let PD(n) and PDO(n) count, respectively, the number of partitions of n with designated summands and the number of partitions of n with designated summands where all parts are odd, and let PDt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PD_t(n)$$\end{document} and PDOt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PDO_t(n)$$\end{document} count, respectively, the number of tags (that is, designated summands) in the partitions enumerated by PD(n) and PDO(n). We give elementary proofs of congruences for these partition functions.
引用
收藏
页码:385 / 395
页数:10
相关论文
共 50 条
  • [31] New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands
    Nayandeep Deka Baruah
    Mandeep Kaur
    The Ramanujan Journal, 2020, 52 : 253 - 274
  • [32] Arithmetic Properties of Summands of Partitions
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2004, 8 : 199 - 215
  • [33] PARTITIONS OF N INTO K SUMMANDS
    GUPTA, H
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1971, 17 (DEC) : 337 - &
  • [34] Arithmetic properties of summands of partitions
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2004, 8 (02): : 199 - 215
  • [35] Arithmetic properties of bipartitions with designated summands
    Naika M.S.M.
    Shivashankar C.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (1) : 37 - 60
  • [36] Infinitely Many Congruences for k-Regular Partitions with Designated Summands (vol 14, pg 931, 2020)
    da Silva, Robson
    Sellers, James A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 1083 - 1085
  • [37] On the distribution of the summands of partitions in residue classes
    Dartyge, C
    Sárközy, A
    Szalay, M
    ACTA MATHEMATICA HUNGARICA, 2005, 109 (03) : 215 - 237
  • [38] Arithmetic properties of summands of partitions II
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2005, 10 (03): : 383 - 394
  • [39] Arithmetic Properties of Summands of Partitions II
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2005, 10 : 383 - 394
  • [40] Multiplicity of summands in the random partitions of an integer
    Ghurumuruhan Ganesan
    Proceedings - Mathematical Sciences, 2013, 123 : 101 - 143