Arithmetic properties of summands of partitions II

被引:6
|
作者
Dartyge, C
Sárközy, A
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1518 Budapest, Hungary
来源
RAMANUJAN JOURNAL | 2005年 / 10卷 / 03期
关键词
partitions; residue classes;
D O I
10.1007/s11139-005-4855-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d is an element of N, d >= 2. We prove that a positive proportion of partitions of an integer n satisfies the following : for all 1 <= a < b <= d, the number of the parts congruent to a (mod d) is greater than the number of the parts congruent to b (mod d). We also show that for almost all partitions the rate of the number of square free parts is 6/pi(2) (1 + o(1)).
引用
收藏
页码:383 / 394
页数:12
相关论文
共 50 条
  • [1] Arithmetic Properties of Summands of Partitions II
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2005, 10 : 383 - 394
  • [2] Arithmetic Properties of Summands of Partitions
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2004, 8 : 199 - 215
  • [3] Arithmetic properties of summands of partitions
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2004, 8 (02): : 199 - 215
  • [4] Arithmetic properties of partitions with designated summands
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2016, 159 : 160 - 175
  • [5] Arithmetic properties of bipartitions with designated summands
    Naika M.S.M.
    Shivashankar C.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (1) : 37 - 60
  • [6] COMMON SUMMANDS IN PARTITIONS
    LOXTON, JH
    YEUNG, HF
    ACTA ARITHMETICA, 1992, 60 (04) : 307 - 320
  • [7] PARTITIONS INTO ODD SUMMANDS
    HAGIS, P
    AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (02) : 213 - &
  • [8] ON SUMMANDS OF GENERAL PARTITIONS
    Nicolas, Jean-Louis
    Sarkoezy, Andras
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2007, 37 (02) : 351 - 359
  • [9] Partitions with designated summands
    Andrews, GE
    Lewis, RP
    Lovejoy, J
    ACTA ARITHMETICA, 2002, 105 (01) : 51 - 66
  • [10] ARITHMETIC PROPERTIES OF TRIANGULAR PARTITIONS
    Kim, Byungchan
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 791 - 802