Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan

被引:0
|
作者
Han-Qing Kang
Bin Zhu
Tong Zhu
Jia-Li Sun
Jian-Jun Ou
机构
[1] Nanjing University of Information Science & Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
[2] CIRA/Colorado State University,undefined
[3] NOAA/NESDIS/STAR/JCSDA,undefined
[4] Jiangsu Climate Centre,undefined
[5] Shanghai Marine Meteorological Centre,undefined
来源
Boundary-Layer Meteorology | 2014年 / 152卷
关键词
Upstream Effects; Urban Boundary Layer; Urban Dry Island; Urban Heat Island;
D O I
暂无
中图分类号
学科分类号
摘要
The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}5 m s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2–0.4 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the afternoon and 0.4–0.6 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about -0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.2$$\end{document} to -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.5 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5–1 g kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.
引用
收藏
页码:411 / 426
页数:15
相关论文
共 50 条
  • [41] Urban heat island in Shanghai, China
    Cui Linli
    Shi, Jun
    Gao Zhiqiang
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IV, 2007, 6679
  • [42] Application of MODIS data to assess the urban heat island in Shanghai City, China
    Yan, Feng
    Qin, Zhihao
    Wang, Yanjiao
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [43] MODELING OF THE URBAN HEAT-ISLAND AND OF ITS INTERACTION WITH POLLUTANT DISPERSAL
    BENNETT, M
    SAAB, AE
    ATMOSPHERIC ENVIRONMENT, 1982, 16 (08) : 1797 - 1822
  • [44] THE USE OF A VEGETATION INDEX FOR ASSESSMENT OF THE URBAN HEAT-ISLAND EFFECT
    GALLO, KP
    MCNAB, AL
    KARL, TR
    BROWN, JF
    HOOD, JJ
    TARPLEY, JD
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (11) : 2223 - 2230
  • [45] ANTHROPOGENIC AEROSOLS AND ITS ROLE IN FORMATION OF THE URBAN HEAT-ISLAND
    FEDOTOV, AY
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1991, 27 (08): : 842 - 846
  • [46] ADVANTAGES AND DISADVANTAGES OF THE URBAN HEAT-ISLAND - AN EVALUATION ACCORDING TO THE HYGRO-THERMIC EFFECTS
    BRUNDL, W
    HOPPE, P
    ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1984, 35 (1-2): : 55 - 66
  • [47] Physiological thermal limits predict differential responses of bees to urban heat-island effects
    Hamblin, April L.
    Youngsteadt, Elsa
    Lopez-Uribe, Margarita M.
    Frank, Steven D.
    BIOLOGY LETTERS, 2017, 13 (06)
  • [48] The impact of urban form on urban heat island variation in a Mediterranean city
    Mebarki, Imane
    Maliki, Mustapha
    Ozkan, Soofia Tahira Elias
    Kadi, Sid El Mahi Lamine
    GRADEVINAR, 2022, 74 (11): : 967 - 977
  • [49] Mitigating the Urban Heat Island Effect in Megacity Tehran
    Sodoudi, Sahar
    Shahmohamadi, Parisa
    Vollack, Ken
    Cubasch, Ulrich
    Che-Ani, A. I.
    ADVANCES IN METEOROLOGY, 2014, 2014
  • [50] Link of intensity of heat-island effect of a city with its size and population
    I. I. Mokhov
    Doklady Earth Sciences, 2009, 427 : 997 - 1000