Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan

被引:0
|
作者
Han-Qing Kang
Bin Zhu
Tong Zhu
Jia-Li Sun
Jian-Jun Ou
机构
[1] Nanjing University of Information Science & Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
[2] CIRA/Colorado State University,undefined
[3] NOAA/NESDIS/STAR/JCSDA,undefined
[4] Jiangsu Climate Centre,undefined
[5] Shanghai Marine Meteorological Centre,undefined
来源
Boundary-Layer Meteorology | 2014年 / 152卷
关键词
Upstream Effects; Urban Boundary Layer; Urban Dry Island; Urban Heat Island;
D O I
暂无
中图分类号
学科分类号
摘要
The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}5 m s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2–0.4 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the afternoon and 0.4–0.6 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about -0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.2$$\end{document} to -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.5 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5–1 g kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.
引用
收藏
页码:411 / 426
页数:15
相关论文
共 50 条
  • [31] LINEAR-THEORY OF THE URBAN HEAT-ISLAND CIRCULATION
    OERLEMANS, J
    ATMOSPHERIC ENVIRONMENT, 1986, 20 (03) : 447 - 453
  • [32] STATISTICAL-ANALYSIS OF THE MADRID URBAN HEAT-ISLAND
    YAGUE, C
    ZURITA, E
    MARTINEZ, A
    ATMOSPHERIC ENVIRONMENT PART B-URBAN ATMOSPHERE, 1991, 25 (03): : 327 - 332
  • [33] STUDY CONCERNING THE HEAT-ISLAND AND THE MIXING HEIGHT OF A CITY
    AHRENS, D
    ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1981, 29 (1-2): : 29 - 36
  • [34] Evaluation of methodologies for assessment of the urban heat-island effect
    Gallo, KP
    Owen, TW
    NINTH SYMPOSIUM ON GLOBAL CHANGE STUDIES, 1998, : 97 - 98
  • [35] EVIDENCE OF THE URBAN HEAT-ISLAND IN ROME BY CLIMATOLOGICAL ANALYSES
    COLACINO, M
    LAVAGNINI, A
    ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1982, 31 (1-2): : 87 - 97
  • [36] Impact of Shanghai urban land surface forcing on downstream city ozone chemistry
    Zhu, Bin
    Kang, Hanqing
    Zhu, Tong
    Su, Jifeng
    Hou, Xuewei
    Gao, Jinhui
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (09) : 4340 - 4351
  • [37] The urban heat island and its impact on heat waves and human health in Shanghai
    Tan, Jianguo
    Zheng, Youfei
    Tang, Xu
    Guo, Changyi
    Li, Liping
    Song, Guixiang
    Zhen, Xinrong
    Yuan, Dong
    Kalkstein, Adam J.
    Li, Furong
    Chen, Heng
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2010, 54 (01) : 75 - 84
  • [38] The urban heat island and its impact on heat waves and human health in Shanghai
    Jianguo Tan
    Youfei Zheng
    Xu Tang
    Changyi Guo
    Liping Li
    Guixiang Song
    Xinrong Zhen
    Dong Yuan
    Adam J. Kalkstein
    Furong Li
    Heng Chen
    International Journal of Biometeorology, 2010, 54 : 75 - 84
  • [39] Impact of daytime precipitation duration on urban heat island intensity over Beijing city
    Yang, Ping
    Ren, Guoyu
    Hou, Wei
    URBAN CLIMATE, 2019, 28
  • [40] Spatio-temporal patterns and population exposure risks of urban heat island in megacity Shanghai, China
    Liu, Dan
    Zhou, Rui
    Ma, Qun
    He, Tianxing
    Fang, Xuening
    Xiao, Lishan
    Hu, Yina
    Li, Jie
    Shao, Lin
    Gao, Jun
    SUSTAINABLE CITIES AND SOCIETY, 2024, 108