Nakayama’s lemma for acts over monoids

被引:0
|
作者
Kamal Ahmadi
Ali Madanshekaf
机构
[1] Semnan University,Department of Mathematics
来源
Semigroup Forum | 2015年 / 91卷
关键词
Monoid; -act; Nakayama’s lemma; Quasi-strongly faithful; r-Monoid; Principally reduced monoid; Projective cover;
D O I
暂无
中图分类号
学科分类号
摘要
A crucial lemma on module theory is Nakayama’s lemma (Anderson and Fuller in Rings and Categories of Modules, Springer, New York, 1992). In this manuscript, we shall investigate some forms of Nakayama’s lemma in the category of right acts over a given monoid S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} with identity 1. In fact we present two forms of which the latter is similar to that on modules. To this end, we introduce the notion of quasi-strongly faithful for acts which is more general than that of strongly faithful which exists in the context. Some relevant examples are indicated. Among other things, we prove Krull intersection theorem for S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-acts. Furthermore, as an application of Nakayama’s lemma we prove that a projective S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-act P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} is a projective cover for an S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-act A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} if and only if P/PM≅A/AM,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P/P{\mathfrak {M}}\cong A/A{\mathfrak {M}},$$\end{document} in which M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {M}}$$\end{document} is the unique maximal right ideal of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, it is two-sided and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is finitely generated quasi-strongly faithful.
引用
收藏
页码:321 / 337
页数:16
相关论文
共 50 条
  • [31] Tenser products and preservation of limits, for acts over monoids
    Bulman-Fleming, S
    Laan, V
    SEMIGROUP FORUM, 2001, 63 (02) : 161 - 179
  • [32] E-Torsion Free Acts Over Monoids
    Gochin, Akbar
    Zare, Abbas
    Mohammadzadeh, Hossein
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (01): : 93 - 114
  • [33] ON RELATIVE QUASI-PROJECTIVE ACTS OVER MONOIDS
    Liu Zhongkui
    Ahsan, Javed
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2010, 35 (2D) : 225 - 233
  • [34] Tensor products and preservation of limits, for acts over monoids
    S. Bulman-Fleming
    V. Laan
    Semigroup Forum, 2001, 63 : 161 - 179
  • [35] An approach to injective acts over monoids based on indecomposability
    Sedaghatjoo, Mojtaba
    Naghipoor, Mohammad Ali
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 3005 - 3016
  • [36] SOME REMARKS ON LOCALLY NOETHERIAN AND LOCALLY ARTINIAN S- ACTS OVER MONOIDS
    Khosravi, Roghaieh
    Roueentan, Mohammad
    Rahimi, Elham
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (03): : 439 - 449
  • [37] MONOIDS OVER WHICH ALL REGULAR RIGHT S-ACTS ARE WEAKLY INJECTIVE
    Moon, Eunho L.
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (04): : 423 - 431
  • [38] WREATH-PRODUCTS OF ACTS OVER MONOIDS .1. REGULAR AND INVERSE ACTS
    KNAUER, U
    MIKHALEV, AV
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 51 (03) : 251 - 260
  • [39] A short note on strongly flat covers of acts over monoids
    Alex Bailey
    James Renshaw
    Semigroup Forum, 2016, 93 : 416 - 422
  • [40] Monoids over which all flat left acts are regular
    Liu, ZK
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 111 (1-3) : 199 - 203