Nakayama’s lemma for acts over monoids

被引:0
|
作者
Kamal Ahmadi
Ali Madanshekaf
机构
[1] Semnan University,Department of Mathematics
来源
Semigroup Forum | 2015年 / 91卷
关键词
Monoid; -act; Nakayama’s lemma; Quasi-strongly faithful; r-Monoid; Principally reduced monoid; Projective cover;
D O I
暂无
中图分类号
学科分类号
摘要
A crucial lemma on module theory is Nakayama’s lemma (Anderson and Fuller in Rings and Categories of Modules, Springer, New York, 1992). In this manuscript, we shall investigate some forms of Nakayama’s lemma in the category of right acts over a given monoid S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} with identity 1. In fact we present two forms of which the latter is similar to that on modules. To this end, we introduce the notion of quasi-strongly faithful for acts which is more general than that of strongly faithful which exists in the context. Some relevant examples are indicated. Among other things, we prove Krull intersection theorem for S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-acts. Furthermore, as an application of Nakayama’s lemma we prove that a projective S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-act P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} is a projective cover for an S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-act A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} if and only if P/PM≅A/AM,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P/P{\mathfrak {M}}\cong A/A{\mathfrak {M}},$$\end{document} in which M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {M}}$$\end{document} is the unique maximal right ideal of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, it is two-sided and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is finitely generated quasi-strongly faithful.
引用
收藏
页码:321 / 337
页数:16
相关论文
共 50 条
  • [21] Globalizations of strong partial acts over monoids
    Luhaaar, Urmas
    SEMIGROUP FORUM, 2024, 109 (03) : 558 - 573
  • [22] Flatness properties of diagonal acts over monoids
    Sydney Bulman-Fleming
    Andrew Gilmour
    Semigroup Forum, 2009, 79
  • [23] Elementary properties of categories of acts over monoids
    Bunina E.I.
    Mikhalev A.V.
    Algebra and Logic, 2006, 45 (6) : 389 - 402
  • [24] ON FLATNESS COVERS OF CYCLIC ACTS OVER MONOIDS
    Qiao, Husheng
    Wang, Limin
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 163 - 167
  • [25] COVERS OF ACTS OVER MONOIDS AND PURE EPIMORPHISMS
    Bailey, Alex
    Renshaw, James H.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) : 589 - 617
  • [26] On covers of acts over monoids with Condition (P′)
    Irannezhad, Setareh
    Madanshekaf, Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 352 - 361
  • [27] STRONGLY TORSION FREE ACTS OVER MONOIDS
    Zare, Abas
    Golchin, Akbar
    Mohammadzadeh, Hossein
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (03)
  • [28] Covers of Finitely Generated Acts over Monoids
    Zhang, Xiaoqin
    Zhao, Tingting
    MATHEMATICS, 2024, 12 (12)
  • [29] Monoids over which products of indecomposable acts are indecomposable
    Sedaghatjoo, Mojtaba
    Khaksari, Ahmad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 229 - 237
  • [30] Flatness properties of acts over commutative, cancellative monoids
    Bulman-Fleming, S
    MATHEMATIKA, 1999, 46 (91) : 93 - 102