An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata

被引:0
|
作者
B. Naresh Kumar Reddy
B. Veena Vani
G. Bhavya Lahari
机构
[1] Faculty of Science and Technology,Department of Electronics and Communication Engineering
[2] ICFAI Foundation for Higher Education,Department of Electrical Engineering
[3] AITS,Department of Electronics and Computer Engineering
[4] K.L. University,undefined
来源
Telecommunication Systems | 2020年 / 74卷
关键词
Quantum-dot cellular automata (QCA); Majority gate; Inverter; FPGA board; Vedic multiplier;
D O I
暂无
中图分类号
学科分类号
摘要
The Quantum-Dot Cellular Automata (QCA) is an incipient nanotechnology in contrast to the CMOS technology with appealing features like low power consumption, high speed and reduced size in implementing the architecture for the computations. QCA provides better and well-organised solution with a modern and exclusive result in performing logical computations at Nano-scale. In this paper mainly focused on design and implementation of 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier with the help of 4 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 4 Vedic multiplier using Nikhilam and Anurupayan Sutra. The simulation results achieved with the help of QCA Designer tool shows that the area and delay of the proposed 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier is decreased by an average of 45.8% and 72.6%, 82.5% and 80.7%, and 17.24% and 21% respectively when compared to 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Array multiplier, 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Wallace multiplier, and 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Urdhva Tiryagbhyam Vedic multiplier. Furthermore, the proposed multiplier is implemented on Kintex-7 (KC705) FPGA board. The results revealed a reduction in area and delay compared to a well-known prior art multipliers.
引用
收藏
页码:487 / 496
页数:9
相关论文
共 50 条
  • [41] Quantum-dot cellular automata
    Cole, T
    Lusth, JC
    PROGRESS IN QUANTUM ELECTRONICS, 2001, 25 (04) : 165 - 189
  • [42] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, R
    Timler, J
    Toth, G
    Bernstein, GH
    Lent, CS
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 875 - 880
  • [43] A Conventional Design for CLB Implementation of a FPGA in Quantum-dot Cellular Automata (QCA)
    Kianpour, Moein
    Sabbaghi-Nadooshan, Reza
    PROCEEDINGS OF THE 2012 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2012, : 36 - 42
  • [44] Design and implementation of finite state machine using quantum-dot cellular automata
    Sungeetha D.
    Keerthana G.
    Vijayakumar K.
    International Journal of Reasoning-based Intelligent Systems, 2019, 11 (02) : 186 - 193
  • [45] Radix-4 Recoded Multiplier on Quantum-Dot Cellular Automata
    Hanninen, Ismo
    Takala, Jarmo
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, PROCEEDINGS, 2009, 5657 : 118 - 127
  • [46] A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata
    Kianpour, Moein
    Sabbagni-Nadooshan, Reza
    MICROPROCESSORS AND MICROSYSTEMS, 2014, 38 (08) : 1046 - 1062
  • [47] Reversible priority encoder design and implementation using quantum-dot cellular automata
    Das, Jadav Chandra
    De, Debashis
    IET QUANTUM COMMUNICATION, 2020, 1 (02): : 72 - 78
  • [48] Programmable multiplier circuit designed for quantum-dot cellular automata devices
    Teen, Y. P. Arul
    Subha, M.
    Shabeer, Shahul Hameed
    Rajesh, K. B.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 1295 - 1300
  • [49] Quantum-dot cellular automata
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
    Microelectron Eng, 1 (261-263):
  • [50] Design and implementation of Multistage Interconnection Networks using Quantum-dot Cellular Automata
    Tehrani, Mohammad A.
    Safaei, Farshad
    Moaiyeri, Mohammad Hossein
    Navi, Keivan
    MICROELECTRONICS JOURNAL, 2011, 42 (06) : 913 - 922