An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata

被引:0
|
作者
B. Naresh Kumar Reddy
B. Veena Vani
G. Bhavya Lahari
机构
[1] Faculty of Science and Technology,Department of Electronics and Communication Engineering
[2] ICFAI Foundation for Higher Education,Department of Electrical Engineering
[3] AITS,Department of Electronics and Computer Engineering
[4] K.L. University,undefined
来源
Telecommunication Systems | 2020年 / 74卷
关键词
Quantum-dot cellular automata (QCA); Majority gate; Inverter; FPGA board; Vedic multiplier;
D O I
暂无
中图分类号
学科分类号
摘要
The Quantum-Dot Cellular Automata (QCA) is an incipient nanotechnology in contrast to the CMOS technology with appealing features like low power consumption, high speed and reduced size in implementing the architecture for the computations. QCA provides better and well-organised solution with a modern and exclusive result in performing logical computations at Nano-scale. In this paper mainly focused on design and implementation of 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier with the help of 4 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 4 Vedic multiplier using Nikhilam and Anurupayan Sutra. The simulation results achieved with the help of QCA Designer tool shows that the area and delay of the proposed 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Vedic multiplier is decreased by an average of 45.8% and 72.6%, 82.5% and 80.7%, and 17.24% and 21% respectively when compared to 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Array multiplier, 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Wallace multiplier, and 8 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 8 Urdhva Tiryagbhyam Vedic multiplier. Furthermore, the proposed multiplier is implemented on Kintex-7 (KC705) FPGA board. The results revealed a reduction in area and delay compared to a well-known prior art multipliers.
引用
收藏
页码:487 / 496
页数:9
相关论文
共 50 条
  • [31] Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology
    Iman Edrisi Arani
    Abdalhossein Rezai
    Journal of Computational Electronics, 2018, 17 : 1771 - 1779
  • [32] Efficient Design of Vedic Square Calculator Using Quantum Dot Cellular Automata (QCA)
    Khan, Angshuman
    Bahar, Ali Newaz
    Arya, Rajeev
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1587 - 1591
  • [33] Simplified quantum-dot cellular automata implementation of counters
    Aghababa, Hossein
    Yazdinejad, Mohammad Hossein
    Afzali, Ali
    Forouzandeh, Behjat
    2008 7TH INTERNATIONAL CARIBBEAN CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS, 2008, : 128 - +
  • [34] Implementation of convolutional encoder in Quantum-dot cellular automata
    Zhang, Mingliang
    Cai, Li
    Yang, Xiaokuo
    Cui, Huanqing
    Wang, Zhichun
    Key Engineering Materials, 2015, 645 : 1078 - 1084
  • [35] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1997, 334B (5-6): : 1147 - 1175
  • [36] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (10): : 2199 - 2218
  • [37] A novel nano-scale architecture of Vedic multiplier using majority logic in quantum-dot cellular automata technology
    Huang, Junjun
    Lale, S.
    ELECTRONICS LETTERS, 2022, 58 (17) : 660 - 662
  • [38] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 261 - 263
  • [39] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Zuo, X
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04): : 1394 - 1398
  • [40] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, RK
    Ramasubramaniam, R
    Amlani, I
    Bernstein, GH
    Lent, CS
    CURRENT ISSUES IN HETEROEPITAXIAL GROWTH-STRESS RELAXATION AND SELF ASSEMBLY, 2002, 696 : 221 - 231