Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities

被引:0
|
作者
Eric F. May
Robert F. Berg
Michael R. Moldover
机构
[1] National Institute of Standards and Technology,Process Measurements Division
[2] University of Western Australia,School of Oil and Gas Engineering
来源
关键词
argon; capillary viscometer; intermolecular potential; helium; hydrogen; methane; thermal conductivity; viscosity; viscosity ratio; xenon;
D O I
暂无
中图分类号
学科分类号
摘要
The zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas}}$$\end{document} of hydrogen, methane, and argon was determined in the temperature range from 200 to 400 K, with standard uncertainties of 0.084% for hydrogen and argon and 0.096% for methane. These uncertainties are dominated by the uncertainty of helium’s viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm He}}$$\end{document} , which we estimate to be 0.080% from the difference between ab initio and measured values at 298.15 K. For xenon, measurements ranged between 200 and 300 K and the zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,T}^{\rm Xe} $$\end{document} was determined with an uncertainty of 0.11%. The data imply that xenon’s viscosity virial coefficient is positive over this temperature range, in contrast with the predictions of corresponding-states models. Furthermore, the xenon data are inconsistent with Curtiss’ prediction that bound pairs cause an anomalous viscosity decrease at low reduced temperatures. At 298.15 K. the ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,298}^{\rm Ar}\!/\eta_{0,298}^{\rm He} ,{\eta _{0,298}^{{\rm CH}_{4}} }\!/\eta_{0,298}^{\rm He },{\eta _{0,298}^{{\rm H}_2} }\!/{\eta_{0,298}^{\rm He}},{\eta_{0,298}^{\rm Xe} }\!/{\eta _{0,298}^{\rm He} }, {\eta _{0,298}^{{\rm N}_2} }\!/{\eta _{0,298}^{\rm He}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta _{0,298}^{{\rm C}_2{\rm H}_6} }/{\eta _{0,298}^{\rm He} }$$\end{document} were determined with a relative uncertainty of less than 0.024% by measuring the flow rate of these gases through a quartz capillary while simultaneously measuring the pressures at the ends of the capillary. Between 200 and 400 K, a two-capillary viscometer was used to determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }$$\end{document} with an uncertainty of 0.024% for H2 and Ar, 0.053% for CH4, and 0.077% for Xe. From \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }, \eta_{0,T}^{\rm gas} $$\end{document} was computed using the values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm He}$$\end{document} calculated ab initio. Finally, the thermal conductivity of Xe and Ar was computed from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm gas} $$\end{document} and values of the Prandtl number that were computed from interatomic potentials. These results may help to improve correlations for the transport properties of these gases and assist efforts to develop ab initio two- and three-body intermolecular potentials for these gases. Reference viscosities for seven gases at 100 kPa are provided for gas metering applications.
引用
收藏
页码:1085 / 1110
页数:25
相关论文
共 50 条
  • [41] CONCENTRATION OF MOLECULAR H2 AND CH4 IN STRATOSPHERE
    EHHALT, DH
    HEIDT, LE
    PURE AND APPLIED GEOPHYSICS, 1973, 106 (5-7) : 1352 - 1360
  • [42] Etching characteristics of ZnO and Al-doped ZnO in inductively coupled Cl2/CH4/H2/Ar and BCl3/CH 4/H2/Ar plasmas
    Lee, Hack Joo
    Kwon, Bong Soo
    Kim, Hyun Woo
    Kim, Seon Il
    Yoo, Dong-Geun
    Boo, Jin-Hyo
    Lee, Nae-Eung
    Japanese Journal of Applied Physics, 2008, 47 (8 PART 3): : 6960 - 6964
  • [43] PLASMA-ETCHING OF ZNS, ZNSE, CDS, AND CDTE IN ELECTRON-CYCLOTRON RESONANCE CH4/H2/AR AND H2/AR DISCHARGES
    PEARTON, SJ
    REN, F
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1993, 11 (01): : 15 - 19
  • [44] Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations
    Tong, Minman
    Yang, Qingyuan
    Zhong, Chongli
    MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 210 : 142 - 148
  • [45] Inductively coupled plasma etching of In-based compound semiconductors in CH4/H2/Ar
    Diniz, JA
    Swart, JW
    Jung, KB
    Hong, J
    Pearton, SJ
    SOLID-STATE ELECTRONICS, 1998, 42 (11) : 1947 - 1951
  • [46] ELECTRON-CYCLOTRON RESONANCE PLASMA-ETCHING OF INP IN CH4/H2/AR
    PEARTON, SJ
    CHAKRABARTI, UK
    KINSELLA, AP
    JOHNSON, D
    CONSTANTINE, C
    APPLIED PHYSICS LETTERS, 1990, 56 (15) : 1424 - 1426
  • [47] Diamond deposition at low temperature by using CH4/H2 gas mixture
    Dong, LF
    Ma, BQ
    Dong, GY
    DIAMOND AND RELATED MATERIALS, 2002, 11 (09) : 1697 - 1702
  • [48] Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures
    May, PW
    Harvey, JN
    Smith, JA
    Mankelevich, YA
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (10)
  • [49] Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures
    May, P.W.
    Harvey, J.N.
    Smith, J.A.
    Mankelevich, Yu.A.
    Journal of Applied Physics, 2006, 99 (10):
  • [50] Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures
    Li, Qingzhao
    Lin, Baiquan
    Dai, Huaming
    Zhao, Shuai
    POWDER TECHNOLOGY, 2012, 229 : 222 - 228