Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities

被引:0
|
作者
Eric F. May
Robert F. Berg
Michael R. Moldover
机构
[1] National Institute of Standards and Technology,Process Measurements Division
[2] University of Western Australia,School of Oil and Gas Engineering
来源
关键词
argon; capillary viscometer; intermolecular potential; helium; hydrogen; methane; thermal conductivity; viscosity; viscosity ratio; xenon;
D O I
暂无
中图分类号
学科分类号
摘要
The zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas}}$$\end{document} of hydrogen, methane, and argon was determined in the temperature range from 200 to 400 K, with standard uncertainties of 0.084% for hydrogen and argon and 0.096% for methane. These uncertainties are dominated by the uncertainty of helium’s viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm He}}$$\end{document} , which we estimate to be 0.080% from the difference between ab initio and measured values at 298.15 K. For xenon, measurements ranged between 200 and 300 K and the zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,T}^{\rm Xe} $$\end{document} was determined with an uncertainty of 0.11%. The data imply that xenon’s viscosity virial coefficient is positive over this temperature range, in contrast with the predictions of corresponding-states models. Furthermore, the xenon data are inconsistent with Curtiss’ prediction that bound pairs cause an anomalous viscosity decrease at low reduced temperatures. At 298.15 K. the ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,298}^{\rm Ar}\!/\eta_{0,298}^{\rm He} ,{\eta _{0,298}^{{\rm CH}_{4}} }\!/\eta_{0,298}^{\rm He },{\eta _{0,298}^{{\rm H}_2} }\!/{\eta_{0,298}^{\rm He}},{\eta_{0,298}^{\rm Xe} }\!/{\eta _{0,298}^{\rm He} }, {\eta _{0,298}^{{\rm N}_2} }\!/{\eta _{0,298}^{\rm He}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta _{0,298}^{{\rm C}_2{\rm H}_6} }/{\eta _{0,298}^{\rm He} }$$\end{document} were determined with a relative uncertainty of less than 0.024% by measuring the flow rate of these gases through a quartz capillary while simultaneously measuring the pressures at the ends of the capillary. Between 200 and 400 K, a two-capillary viscometer was used to determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }$$\end{document} with an uncertainty of 0.024% for H2 and Ar, 0.053% for CH4, and 0.077% for Xe. From \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }, \eta_{0,T}^{\rm gas} $$\end{document} was computed using the values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm He}$$\end{document} calculated ab initio. Finally, the thermal conductivity of Xe and Ar was computed from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm gas} $$\end{document} and values of the Prandtl number that were computed from interatomic potentials. These results may help to improve correlations for the transport properties of these gases and assist efforts to develop ab initio two- and three-body intermolecular potentials for these gases. Reference viscosities for seven gases at 100 kPa are provided for gas metering applications.
引用
收藏
页码:1085 / 1110
页数:25
相关论文
共 50 条
  • [31] Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe
    Eddy, CR
    Leonhardt, D
    Shamamian, VA
    Butler, JE
    JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (05) : 538 - 542
  • [32] Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe
    C. R. Eddy
    D. Leonhardt
    V. A. Shamamian
    J. E. Butler
    Journal of Electronic Materials, 2001, 30 : 538 - 542
  • [33] Modelling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamond growth
    Mohasseb, F
    Hassouni, K
    Bénédic, F
    Lombardi, G
    Gicquel, A
    Synthesis, Properties and Applications of Ultrananocrystalline Diamond, 2005, 192 : 93 - 108
  • [34] Characterization of the CH4/H2/Ar high density plasma etching process for HgCdTe
    C. R. Eddy
    D. Leonhardt
    V. A. Shamamian
    J. R. Meyer
    C. A. Hoffman
    J. E. Butler
    Journal of Electronic Materials, 1999, 28 : 347 - 354
  • [35] Deposition of nanocrystalline diamond films in pulsed Ar/H2/CH4 microwave discharges
    Moneger, D.
    Benedic, F.
    Azouani, R.
    Chelibane, F.
    Syll, O.
    Silva, F.
    Gicquel, A.
    DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) : 1295 - 1299
  • [36] DEPOSITION OF POLYCRYSTALLINE DIAMONDS IN A DC PLASMA-JET OF AR/H2/CH4
    VILOTIJEVIC, M
    DIMITRIJEVIC, ST
    RANDJELOVIC, I
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1993, 12 (16) : 1261 - 1263
  • [37] Characterization of high density CH4/H2/Ar plasmas for compound semiconductor etching
    Eddy, CR
    Leonhardt, D
    Douglass, SR
    Shamamian, VA
    Thoms, BD
    Butler, JE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (03): : 780 - 792
  • [38] Characterization of the CH4/H2/Ar high density plasma etching process for HgCdTe
    Eddy, CR
    Leonhardt, D
    Shamamian, VA
    Meyer, JR
    Hoffman, CA
    Butler, JE
    JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (04) : 347 - 354
  • [39] Effect of doping elements on ZnO etching characteristics with CH4/H2/Ar plasma
    Shin, M. H.
    Park, M. S.
    Jung, S. H.
    Boo, J. H.
    Lee, N.-E.
    THIN SOLID FILMS, 2007, 515 (12) : 4950 - 4954
  • [40] High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation
    Bolshakov, A. P.
    Ralchenko, V. G.
    Yurov, V. Y.
    Popovich, A. F.
    Antonova, I. A.
    Khomich, A. A.
    Ashkinazi, E. E.
    Ryzhkov, S. G.
    Vlasov, A. V.
    Khomich, A. V.
    DIAMOND AND RELATED MATERIALS, 2016, 62 : 49 - 57