Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities

被引:0
|
作者
Eric F. May
Robert F. Berg
Michael R. Moldover
机构
[1] National Institute of Standards and Technology,Process Measurements Division
[2] University of Western Australia,School of Oil and Gas Engineering
来源
关键词
argon; capillary viscometer; intermolecular potential; helium; hydrogen; methane; thermal conductivity; viscosity; viscosity ratio; xenon;
D O I
暂无
中图分类号
学科分类号
摘要
The zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas}}$$\end{document} of hydrogen, methane, and argon was determined in the temperature range from 200 to 400 K, with standard uncertainties of 0.084% for hydrogen and argon and 0.096% for methane. These uncertainties are dominated by the uncertainty of helium’s viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm He}}$$\end{document} , which we estimate to be 0.080% from the difference between ab initio and measured values at 298.15 K. For xenon, measurements ranged between 200 and 300 K and the zero-density viscosity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,T}^{\rm Xe} $$\end{document} was determined with an uncertainty of 0.11%. The data imply that xenon’s viscosity virial coefficient is positive over this temperature range, in contrast with the predictions of corresponding-states models. Furthermore, the xenon data are inconsistent with Curtiss’ prediction that bound pairs cause an anomalous viscosity decrease at low reduced temperatures. At 298.15 K. the ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{0,298}^{\rm Ar}\!/\eta_{0,298}^{\rm He} ,{\eta _{0,298}^{{\rm CH}_{4}} }\!/\eta_{0,298}^{\rm He },{\eta _{0,298}^{{\rm H}_2} }\!/{\eta_{0,298}^{\rm He}},{\eta_{0,298}^{\rm Xe} }\!/{\eta _{0,298}^{\rm He} }, {\eta _{0,298}^{{\rm N}_2} }\!/{\eta _{0,298}^{\rm He}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta _{0,298}^{{\rm C}_2{\rm H}_6} }/{\eta _{0,298}^{\rm He} }$$\end{document} were determined with a relative uncertainty of less than 0.024% by measuring the flow rate of these gases through a quartz capillary while simultaneously measuring the pressures at the ends of the capillary. Between 200 and 400 K, a two-capillary viscometer was used to determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }$$\end{document} with an uncertainty of 0.024% for H2 and Ar, 0.053% for CH4, and 0.077% for Xe. From \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }, \eta_{0,T}^{\rm gas} $$\end{document} was computed using the values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm He}$$\end{document} calculated ab initio. Finally, the thermal conductivity of Xe and Ar was computed from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{0,T}^{\rm gas} $$\end{document} and values of the Prandtl number that were computed from interatomic potentials. These results may help to improve correlations for the transport properties of these gases and assist efforts to develop ab initio two- and three-body intermolecular potentials for these gases. Reference viscosities for seven gases at 100 kPa are provided for gas metering applications.
引用
收藏
页码:1085 / 1110
页数:25
相关论文
共 50 条
  • [1] Reference viscosities of H2, CH4, Ar, and Xe at low densities
    May, Eric F.
    Berg, Robert F.
    Moldover, Michael R.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2007, 28 (04) : 1085 - 1110
  • [2] C2 column densities in H2/Ar/CH4 microwave plasmas
    Goyette, AN
    Matsuda, Y
    Anderson, LW
    Lawler, JE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1998, 16 (01): : 337 - 340
  • [3] Surface cleaning and etching of CdZnTe and CdTe in H2/Ar, CH4/H2/Ar, and CH4/H2/N2/Ar electron cyclotron resonance plasmas
    Robert C. Keller
    H. Zimmermann
    M. Seelmann-Eggebert
    H. J. Richter
    Journal of Electronic Materials, 1997, 26 : 542 - 551
  • [5] ECR Ar/CH4/H2 plasma damage in HgCdTe
    Kim, ET
    Han, MS
    Kwon, JH
    Hahn, SR
    Song, KH
    Lee, SG
    Lee, TS
    Lee, YS
    Kim, JM
    INFRARED TECHNOLOGY AND APPLICATIONS XXIV, PTS 1-2, 1998, 3436 : 84 - 90
  • [6] Reactive ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H2/Ar and CH4/H2/Ar
    Chen, W.R.
    Chang, S.J.
    Su, Y.K.
    Lan, W.H.
    Lin, A.C.H.
    Chang, H.
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2000, 39 (6 A): : 3308 - 3313
  • [7] Reactive ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H2/Ar and CH4/H2/Ar
    Chen, WR
    Chang, SJ
    Su, YK
    Lan, WH
    Lin, ACH
    Chang, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (6A): : 3308 - 3313
  • [8] Spectroscopic determination of C2 densities in Ar/H2/CH4 and Ar/H2/C60 microwave plasmas for nanocrystalline diamond synthesis
    Goyette, AN
    Lawler, JE
    Anderson, LW
    Gruen, DM
    McCauley, TG
    Zhou, D
    Krauss, AR
    IN SITU PROCESS DIAGNOSTICS AND INTELLIGENT MATERIALS PROCESSING, 1998, 502 : 275 - 280
  • [9] Reactive ion etching of InP for optoelectronic device applications:: Comparison in CH4, CH4/H2, and CH4/Ar gas
    Yu, JS
    Lee, YT
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2000, 37 (03) : 241 - 246
  • [10] Deposition of DLC films in CH4/Ar and CH4/Xe rf plasmas
    Mutsukura, N
    Yoshida, K
    DIAMOND AND RELATED MATERIALS, 1996, 5 (09) : 919 - 922