Positive solutions of some parabolic system with cross-diffusion and nonlocal initial conditions

被引:0
|
作者
Christoph Walker
机构
[1] Leibniz Universität Hannover,Institut für Angewandte Mathematik
关键词
35K55; 35Q92; 47B65; 92D25; Cross-diffusion; age structure; global bifurcation; Fredholm operator; maximal regularity;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with a system consisting of two coupled nonlinear parabolic equations with a cross-diffusion term, where the solutions at positive times define the initial states. The equations arise as steady state equations of an age-structured predator–prey system with spatial dispersion. Based on unilateral global bifurcation methods for Fredholm operators and on maximal regularity for parabolic equations, global bifurcation of positive solutions is derived.
引用
下载
收藏
页码:195 / 218
页数:23
相关论文
共 50 条
  • [31] Global martingale solutions for a stochastic population cross-diffusion system
    Dhariwal, Gaurav
    Juengel, Ansgar
    Zamponi, Nicola
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3792 - 3820
  • [32] Exact propagating wave solutions in reaction cross-diffusion system
    Aldurayhim A.
    Biktashev V.N.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [33] A DEGENERATE CROSS-DIFFUSION SYSTEM AS THE INVISCID LIMIT OF A NONLOCAL TISSUE GROWTH MODEL
    David, Noemi
    Debiec, Tomasz
    Mandal, Mainak
    Schmidtchen, Markus
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2090 - 2114
  • [34] Hyperbolic-parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion
    Druet, Pierre-Etienne
    Hopf, Katharina
    Juengel, Ansgar
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (06) : 863 - 894
  • [35] Nonlinear degenerate cross-diffusion systems with nonlocal interaction
    Di Francesco, M.
    Esposito, A.
    Fagioli, S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 94 - 117
  • [36] ZOOLOGY OF A NONLOCAL CROSS-DIFFUSION MODEL FOR TWO SPECIES
    Carrillo, Jose A.
    Huang, Yanghong
    Schmidtchen, Markus
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1078 - 1104
  • [37] Positive solutions for Lotka-Volterra competition system with large cross-diffusion in a spatially heterogeneous environment
    Li, Shanbing
    Liu, Sanyang
    Wu, Jianhua
    Dong, Yaying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 1 - 19
  • [38] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    E. Tulumello
    M. C. Lombardo
    M. Sammartino
    Acta Applicandae Mathematicae, 2014, 132 : 621 - 633
  • [39] Positive solutions for Lotka-Volterra competition systems with large cross-diffusion
    Kuto, Kousuke
    Yamada, Yoshio
    APPLICABLE ANALYSIS, 2010, 89 (07) : 1037 - 1066
  • [40] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    Tulumello, E.
    Lombardo, M. C.
    Sammartino, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 621 - 633