New perspective on fractional Hamiltonian amplitude equation

被引:0
|
作者
Kang-Le Wang
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
关键词
Beta fractional derivative; Fractional Hamiltonian amplitude equation; Fractional rational ; method; Soliton solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sineδ-cosineδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin e_{\delta } - \cos ine_{\delta }$$\end{document} and the fractional rational sinhδ-coshδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh_{\delta } - \cosh_{\delta }$$\end{document} techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation.
引用
收藏
相关论文
共 50 条
  • [41] NEW COMPACT EMBEDDING THEOREM AND FRACTIONAL HAMILTONIAN SYSTEMS
    Benhassine, Abderrazek
    MATHEMATICAL REPORTS, 2022, 24 (04): : 703 - 720
  • [42] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
    Wei Han-Yu
    Xia Tie-Cheng
    CHINESE PHYSICS B, 2012, 21 (11)
  • [43] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
    魏含玉
    夏铁成
    Chinese Physics B, 2012, 21 (11) : 28 - 33
  • [44] A New Perspective on the Stochastic Fractional Order Materialized by the Exact Solutions of Allen-Cahn Equation
    Hasan, Faeza
    Abdoon, Mohamed A.
    Saadeh, Rania
    Berir, Mohammed
    Qazza, Ahmad
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2023, 8 (05) : 912 - 926
  • [45] Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method
    Kumar, Sachin
    Singh, K.
    Gupta, R. K.
    PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01): : 41 - 60
  • [46] Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method
    SACHIN KUMAR
    K SINGH
    R K GUPTA
    Pramana, 2012, 79 : 41 - 60
  • [47] An explicit structure-preserving algorithm for the nonlinear fractional Hamiltonian wave equation
    Fu, Yayun
    Cai, Wenjun
    Wang, Yushun
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [48] The fractional correction rule: a new perspective
    Basu, M
    Liang, Q
    NEURAL NETWORKS, 1998, 11 (06) : 1027 - 1039
  • [49] Fractional Hamiltonian Monodromy
    Nikolaií N. Nekhoroshev
    Dmitrií A. Sadovskií
    Boris I. Zhilinskií
    Annales Henri Poincaré, 2006, 7 : 1099 - 1211
  • [50] Fractional Hamiltonian monodromy
    Nekhoroshev, Nikolaii N.
    Sadovskii, Dmitrii A.
    Zhilinskii, Boris I.
    ANNALES HENRI POINCARE, 2006, 7 (06): : 1099 - 1211