New perspective on fractional Hamiltonian amplitude equation

被引:0
|
作者
Kang-Le Wang
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
关键词
Beta fractional derivative; Fractional Hamiltonian amplitude equation; Fractional rational ; method; Soliton solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sineδ-cosineδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin e_{\delta } - \cos ine_{\delta }$$\end{document} and the fractional rational sinhδ-coshδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh_{\delta } - \cosh_{\delta }$$\end{document} techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation.
引用
收藏
相关论文
共 50 条
  • [31] Fractional Zero Curvature Equation and Generalized Hamiltonian Structure of Soliton Equation Hierarchy
    Fa-Jun Yu
    Hong-Qing Zhang
    International Journal of Theoretical Physics, 2007, 46 : 3182 - 3192
  • [32] Solving nonlinear Hamiltonian amplitude equation: novel insights and computational strategies
    Li, Ming
    Zhang, Wei
    Higazy, M.
    Khater, Mostafa M. A.
    Tan, Xinhua
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
  • [33] Solving nonlinear Hamiltonian amplitude equation: novel insights and computational strategies
    Ming Li
    Wei Zhang
    M. Higazy
    Mostafa M. A. Khater
    Xinhua Tan
    Optical and Quantum Electronics, 56
  • [34] New fractional nonlinear integrable Hamiltonian systems
    Hentosh, Oksana Ye
    Kyshakevych, Bohdan Yu
    Blackmore, Denis
    Prykarpatski, Anatolij K.
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 41 - 49
  • [35] Fractional diffusion equation with new fractional operator
    Sene, Ndolane
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2921 - 2926
  • [36] Regularity of the attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities
    Dai Z.-D.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (2) : 263 - 272
  • [37] Stability, modulation instability and explicit-analytical solutions for the Hamiltonian amplitude equation
    Kalim U. Tariq
    Ahmet Bekir
    Ali Altalbe
    S. M. Raza Kazmi
    Optical and Quantum Electronics, 56
  • [38] Stability, modulation instability and explicit-analytical solutions for the Hamiltonian amplitude equation
    Tariq, Kalim U.
    Bekir, Ahmet
    Altalbe, Ali
    Kazmi, S. M. Raza
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [39] Regularity of the Attractor for the Dissipative Hamiltonian Amplitude Equation Governing Modulated Wave Instabilities
    Zheng-de DaiDepartment of Mathematics
    Acta Mathematicae Applicatae Sinica(English Series), 2002, (02) : 263 - 272
  • [40] RETRACTED: Exploring new optical solutions for nonlinear Hamiltonian amplitude equation via two integration schemes (Retracted Article)
    Tarla, Sibel
    Ali, Karmina K.
    Yusuf, Abdullahi
    PHYSICA SCRIPTA, 2023, 98 (09)