ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES

被引:0
|
作者
Burenkov V.I. [1 ,2 ,3 ]
Senouci M.A. [1 ,2 ]
机构
[1] S.M. Nikol’skii Mathematical Institute, RUDN University, 6 Miklukho Maklay St, Moscow
[2] V.A. Steklov Mathematical Institute, Russian Academy of Sciences, 8 Gubkin St, Moscow
[3] Cardiff School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff
基金
俄罗斯科学基金会;
关键词
Boundedness; Generalized Riesz potential operator; Local Morrey-type spaces;
D O I
10.1007/s10958-022-06134-x
中图分类号
学科分类号
摘要
For all admissible values of the numerical parameters sharp sufficient conditions on the functional parameters are obtained ensuring the boundedness of the generalized Riesz potential from one general local Morrey-type space to another one, which, for a certain range of the numerical parameters, coincide with the necessary ones. © 2023, The Author(s).
引用
收藏
页码:765 / 793
页数:28
相关论文
共 50 条
  • [11] Two-type estimates for the boundedness of generalized Riesz potential operator in the generalized weighted local Morrey spaces
    Kucukaslan, Abdulhamit
    [J]. ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2021, 14 (04): : 111 - 124
  • [12] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758
  • [13] On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces
    Burenkov, V. I.
    Guliyev, H. V.
    Guliyev, V. S.
    [J]. INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 17 - +
  • [14] ON BOUNDEDNESS OF THE HARDY OPERATOR IN MORREY-TYPE SPACES
    Burenkov, V. I.
    Jain, P.
    Tararykova, T. V.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01): : 52 - 80
  • [15] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Zhang, Houkun
    Zhou, Jiang
    [J]. POSITIVITY, 2022, 26 (01)
  • [16] BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR IN ANISOTROPIC LOCAL MORREY-TYPE SPACES
    Akbulut, A.
    Ekincioglu, I.
    Serbetci, A.
    Tararykova, T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 5 - 30
  • [17] Necessary and sufficient conditions for the boundedness of the maximal operator in local Morrey-type spaces
    Burenkov, VI
    Guliev, GV
    [J]. DOKLADY MATHEMATICS, 2003, 68 (01) : 107 - 110
  • [18] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Houkun Zhang
    Jiang Zhou
    [J]. Positivity, 2022, 26
  • [19] Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces
    Burenkov, VI
    Guliyev, HV
    [J]. STUDIA MATHEMATICA, 2004, 163 (02) : 157 - 176
  • [20] Decompositions of local Morrey-type spaces
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    Sawano, Yoshihiro
    [J]. POSITIVITY, 2017, 21 (03) : 1223 - 1252