Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat

被引:0
|
作者
Katrin Becker
Eduardo Gonzalo
Johannes Walcher
Timm Wrase
机构
[1] Texas A&M University,George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy
[2] Lehigh University,Department of Physics
[3] Ruprecht-Karls-Universität Heidelberg,Mathematical Institute and Institute for Theoretical Physics
关键词
Flux Compactifications; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
Type IIB flux vacua based on Landau-Ginzburg models without Kähler deformations provide fully-controlled insights into the non-geometric and strongly-coupled string landscape. We show here that supersymmetric flux configurations at the Fermat point of the 19 model, which were found long-time ago to saturate the orientifold tadpole, leave a number of massless fields, which however are not all flat directions of the superpotential at higher order. More generally, the rank of the Hessian of the superpotential is compatible with a suitably formulated tadpole conjecture for all fluxes that we found. Moreover, we describe new infinite families of supersymmetric 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Minkowski and AdS vacua and confront them with several other swampland conjectures.
引用
收藏
相关论文
共 50 条
  • [41] FRACTIONAL LANDAU-GINZBURG EQUATIONS ON A SEGMENT
    Kaikina, Elena I.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (06) : 1151 - 1181
  • [42] Landau-Ginzburg mirror symmetry conjecture
    He, Weiqiang
    Li, Si
    Shen, Yefeng
    Webb, Rachel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 2915 - 2978
  • [43] Curved A∞ algebras and Landau-Ginzburg models
    Caldararu, Andrei
    Tu, Junwu
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 305 - 342
  • [44] Fractional Branes in Landau-Ginzburg Orbifolds
    Ashok, S. K.
    Dell'Aquila, E.
    Diaconescu, D. -E.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (03) : 461 - 513
  • [45] Duality for toric Landau-Ginzburg models
    Clarke, Patrick
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (01) : 243 - 287
  • [46] EQUIVARIANT LANDAU-GINZBURG MIRROR SYMMETRY
    Guere, Jeremy
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (01): : 243 - 256
  • [47] Landau-Ginzburg solution for imperfect ferroelectrics
    Gao, D
    Li, JF
    Viehland, D
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 242 - 248
  • [48] STOCHASTICALLY PERTURBED LANDAU-GINZBURG EQUATIONS
    BENZI, R
    JONALASINIO, G
    SUTERA, A
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) : 505 - 522
  • [49] LANDAU-GINZBURG DESCRIPTION OF ANYONIC SUPERCONDUCTORS
    BANKS, T
    LYKKEN, JD
    NUCLEAR PHYSICS B, 1990, 336 (03) : 500 - 516
  • [50] McKay correspondence for Landau-Ginzburg models
    Velez, Alexander Quintero
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2009, 3 (01) : 173 - 208