Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat

被引:0
|
作者
Katrin Becker
Eduardo Gonzalo
Johannes Walcher
Timm Wrase
机构
[1] Texas A&M University,George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy
[2] Lehigh University,Department of Physics
[3] Ruprecht-Karls-Universität Heidelberg,Mathematical Institute and Institute for Theoretical Physics
关键词
Flux Compactifications; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
Type IIB flux vacua based on Landau-Ginzburg models without Kähler deformations provide fully-controlled insights into the non-geometric and strongly-coupled string landscape. We show here that supersymmetric flux configurations at the Fermat point of the 19 model, which were found long-time ago to saturate the orientifold tadpole, leave a number of massless fields, which however are not all flat directions of the superpotential at higher order. More generally, the rank of the Hessian of the superpotential is compatible with a suitably formulated tadpole conjecture for all fluxes that we found. Moreover, we describe new infinite families of supersymmetric 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Minkowski and AdS vacua and confront them with several other swampland conjectures.
引用
收藏
相关论文
共 50 条
  • [31] On Landau-Ginzburg models for Fano varieties
    Przyjalkowski, Victor
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2007, 1 (04) : 713 - 728
  • [32] Chiral algebras in Landau-Ginzburg models
    Mykola Dedushenko
    Journal of High Energy Physics, 2018
  • [33] On Landau-Ginzburg systems, quivers and monodromy
    Jerby, Yochay
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 504 - 534
  • [34] Compactifications of spaces of Landau-Ginzburg models
    Diemer, C.
    Katzarkov, L.
    Kerr, G.
    IZVESTIYA MATHEMATICS, 2013, 77 (03) : 487 - 508
  • [35] Extending Landau-Ginzburg Models to the Point
    Nils Carqueville
    Flavio Montiel Montoya
    Communications in Mathematical Physics, 2020, 379 : 955 - 977
  • [36] STOCHASTIC RESONANCE IN THE LANDAU-GINZBURG EQUATION
    BENZI, R
    SUTERA, A
    VULPIANI, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12): : 2239 - 2245
  • [37] Hodge Diamonds of the Landau-Ginzburg Orbifolds
    Basalaev, Alexey
    Ionov, Andrei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [38] A periodic problem for the Landau-Ginzburg equation
    Komarov, MV
    Shishmarev, IA
    MATHEMATICAL NOTES, 2002, 72 (1-2) : 204 - 211
  • [39] ON THE LANDAU-GINZBURG REALIZATION OF TOPOLOGICAL GRAVITIES
    LERCHE, W
    SEVRIN, A
    NUCLEAR PHYSICS B, 1994, 428 (1-2) : 259 - 281
  • [40] Supersymmetric Landau-Ginzburg tensor models
    Chi-Ming Chang
    Sean Colin-Ellerin
    Mukund Rangamani
    Journal of High Energy Physics, 2019