Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles

被引:0
|
作者
Gilles Durrieu
Ion Grama
Quang-Khoai Pham
Jean-Marie Tricot
机构
[1] Université de Bretagne Sud,
[2] LMBA,undefined
来源
Extremes | 2015年 / 18卷
关键词
Nonparametric estimation; Tail conditional probabilities; Extreme conditional quantile; Adaptive estimation; Environment; 62G32; 62G08; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ft(x)=P(X≤x|T=t) be the conditional distribution of a random variable X given that a covariate T takes the value t∈[0,Tmax],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t \in [0,T_{\max }],$\end{document} where we assume that the distributions Ft are in the domain of attraction of the Fréchet distribution. We observe independent random variables Xt1,...,Xtn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{1}},...,X_{t_{n}}$\end{document} associated to a sequence of times 0≤t1<...<tn≤Tmax,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq t_{1}<...<t_{n}\leq T_{\max },$\end{document} where Xti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{i}}$\end{document} has the distribution function Fti.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{t_{i}}.$\end{document} For each t∈[0,Tmax]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,T_{\max }]$\end{document}, we propose a nonparametric adaptive estimator for extreme tail probabilities and quantiles of Ft. It follows from the Fisher-Tippett-Gnedenko theorem that the tail of the distribution function Ft can be adjusted with a Pareto distribution of parameter 𝜃t,τ starting from a threshold τ. We estimate the parameter 𝜃t,τ using a nonparametric kernel estimator of bandwidth h based on the observations larger than τ and we propose a pointwise data driven procedure to choose the threshold τ. A global selection of the bandwidth h based on a cross-validation approach is given. Under some regularity assumptions, we prove that the non adaptive and adaptive estimators of 𝜃t,τ are consistent and we determine their rate of convergence. Finally, we study this procedure using simulations and we analyze an environmental data set.
引用
收藏
页码:437 / 478
页数:41
相关论文
共 50 条
  • [1] Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles
    Durrieu, Gilles
    Grama, Ion
    Quang-Khoai Pham
    Tricot, Jean-Marie
    [J]. EXTREMES, 2015, 18 (03) : 437 - 478
  • [2] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [3] Functional nonparametric estimation of conditional extreme quantiles
    Gardes, Laurent
    Girard, Stephane
    Lekina, Alexandre
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 419 - 433
  • [4] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    [J]. Acta Mathematica Sinica., 2018, 34 (10) - 1610
  • [5] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    He, Feng Yang
    Cheng, Ye Bin
    Tong, Tie Jun
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (10) : 1589 - 1610
  • [6] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    [J]. Acta Mathematica Sinica,English Series, 2018, (10) : 1589 - 1610
  • [7] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang He
    Ye Bin Cheng
    Tie Jun Tong
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 1589 - 1610
  • [8] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Guyader, Arnaud
    Hengartner, Nicolas
    Matzner-Lober, Eric
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02): : 171 - 196
  • [9] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Arnaud Guyader
    Nicolas Hengartner
    Eric Matzner-Løber
    [J]. Applied Mathematics & Optimization, 2011, 64 : 171 - 196
  • [10] Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring
    Ndao, Pathe
    Diop, Aliou
    Dupuy, Jean-Francois
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 63 - 79