t-Generalized Supplemented Modules

被引:0
|
作者
B. Koşar
C. Nebiyev
机构
[1] Ondokuz Mayıs University,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, t-generalized supplemented modules are defined starting from the generalized ⨁-supplemented modules. In addition, we present examples separating the t-generalized supplemented modules, supplemented modules, and generalized ⨁-supplemented modules and also show the equality of these modules for projective and finitely generated modules. Moreover, we define cofinitely t-generalized supplemented modules and give the characterization of these modules. Furthermore, for any ring R, we show that any finite direct sum of t-generalized supplemented R-modules is t-generalized supplemented and that any direct sum of cofinitely t-generalized supplemented R-modules is a cofinitely t-generalized supplemented module.
引用
收藏
页码:1678 / 1686
页数:8
相关论文
共 50 条
  • [31] A generalization of supplemented modules
    Wang, Yongduo
    Wu, Dejun
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 129 - 137
  • [32] ⊕-Cofinitely Supplemented Modules
    H. Çalişici
    A. Pancar
    Czechoslovak Mathematical Journal, 2004, 54 : 1083 - 1088
  • [33] δ-lifting and δ-supplemented modules
    Kosan, Muhammet Tamer
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 53 - 60
  • [34] Finitely generated supplemented modules are amply supplemented
    Smith, PF
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 69 - 79
  • [35] When Finitely Generated δ-Supplemented Modules Are Supplemented
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2015, 22 (01) : 119 - 130
  • [36] FINITELY GENERATED δ-SUPPLEMENTED MODULES ARE AMPLY δ-SUPPLEMENTED
    Tribak, Rachid
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (03) : 430 - 439
  • [37] On closed weak supplemented modules
    曾庆怡
    史美华
    Journal of Zhejiang University Science A(Science in Engineering), 2006, (02) : 210 - 215
  • [38] Rad-supplemented Modules
    Buyukasik, Engin
    Mermut, Engin
    Ozdemir, Salahattin
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 157 - 177
  • [39] GOLDIE-SUPPLEMENTED MODULES
    Birkenmeier, G. F.
    Mutlu, F. Takil
    Nebiyev, C.
    Sokmez, N.
    Tercan, A.
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52A : 41 - 52
  • [40] Direct summands of ⊕-supplemented modules
    Orhan, Nil
    Tuetuencue, Derya Keskin
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2007, 14 (04) : 625 - 630