A compact quadratic spline collocation method for the time-fractional Black–Scholes model

被引:0
|
作者
Zhaowei Tian
Shuying Zhai
Haifeng Ji
Zhifeng Weng
机构
[1] Huaqiao University,School of Mathematical Sciences
[2] Nanjing University of Posts and Telecommunications,School of Science
来源
Journal of Applied Mathematics and Computing | 2021年 / 66卷
关键词
Time-fractional Black–Scholes equation; European option; Exponential transformation; Quadratic spline collocation method;
D O I
暂无
中图分类号
学科分类号
摘要
A compact quadratic spline collocation (QSC) method for the time-fractional Black–Scholes model governing European option pricing is presented. Firstly, after eliminating the convection term by an exponential transformation, the time-fractional Black–Scholes equation is transformed to a time-fractional sub-diffusion equation. Then applying L1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L1 - 2$$\end{document} formula for the Caputo time-fractional derivative and using a collocation method based on quadratic B-spline basic functions for the space discretization, we establish a higher accuracy numerical scheme which yields 3-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3-\alpha $$\end{document} order convergence in time and fourth-order convergence in space. Furthermore, the uniqueness of the numerical solution and the convergence of the algorithm are investigated. Finally, numerical experiments are carried out to verify the theoretical order of accuracy and demonstrate the effectiveness of the new technique. Moreover, we also study the effect of different parameters on option price in time-fractional Black–Scholes model.
引用
收藏
页码:327 / 350
页数:23
相关论文
共 50 条
  • [31] Novel ANN Method for Solving Ordinary and Time-Fractional Black-Scholes Equation
    Bajalan, Saeed
    Bajalan, Nastaran
    COMPLEXITY, 2021, 2021 (2021)
  • [32] SPECTRALLY ACCURATE OPTION PRICING UNDER THE TIME-FRACTIONAL BLACK-SCHOLES MODEL
    Tour, Geraldine
    Thakoor, Nawdha
    Tangman, Desire Yannick
    ANZIAM JOURNAL, 2021, 63 (02): : 228 - 248
  • [33] Numerically pricing double barrier options in a time-fractional Black-Scholes model
    De Staelen, R. H.
    Hendy, A. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1166 - 1175
  • [35] COMPACT FINITE DIFFERENCE SCHEMES OF THE TIME FRACTIONAL BLACK-SCHOLES MODEL
    Tian, Zhaowei
    Zhai, Shuying
    Weng, Zhifeng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 904 - 919
  • [36] The Convergence Analysis of the Numerical Calculation to Price the Time-Fractional Black-Scholes Model
    Mesgarani, H.
    Bakhshandeh, M.
    Aghdam, Y. Esmaeelzade
    Gomez-Aguilar, J. F.
    COMPUTATIONAL ECONOMICS, 2023, 62 (04) : 1845 - 1856
  • [37] TIME-FRACTIONAL DYNAMICS MODEL BLACK-SCHOLES: IMPLICATIONS FOR OPTION PRICING STABILITY
    Sivashankar, Murugesan
    Alnegga, Mohammad
    Sabarinathan, Sriramulu
    Guefaifia, Rafik
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [38] A backward euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation
    Fairweather, Graeme
    Zhang, Haixiang
    Yang, Xuehua
    Xu, Da
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1534 - 1550
  • [39] High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options
    Abdi, N.
    Aminikhah, H.
    Sheikhani, A. H. Refahi
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [40] A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation
    Luo, Wei-Hua
    Gu, Xian-Ming
    Yang, Liu
    Meng, Jing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 : 1 - 24