A backward euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation

被引:21
|
作者
Fairweather, Graeme [1 ]
Zhang, Haixiang [2 ]
Yang, Xuehua [2 ]
Xu, Da [3 ]
机构
[1] Amer Math Soc, Math Reviews, Ann Arbor, MI 48103 USA
[2] Hunan Univ Technol, Sch Sci, Zhuzhou 412008, Hunan, Peoples R China
[3] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
time-fractional Fokker-Planck equation; orthogonal spline collocation method; Caputo derivative; backward Euler method; stability; convergence; superconvergence; FINITE-DIFFERENCE APPROXIMATIONS; DIAGONAL LINEAR-SYSTEMS; MODIFIED ALTERNATE ROW; NUMERICAL-SOLUTION; FORTRAN PACKAGES; SPACE; DIFFUSION; ALGORITHM; FLOW;
D O I
10.1002/num.21958
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a novel numerical method for solving a time-fractional Fokker-Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time-stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534-1550, 2015
引用
收藏
页码:1534 / 1550
页数:17
相关论文
共 50 条
  • [1] A computational technique for solving the time-fractional Fokker-Planck equation
    Roul, Pradip
    Kumari, Trishna
    Rohil, Vikas
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9736 - 9752
  • [2] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [3] Interval Shannon Wavelet Collocation Method for Fractional Fokker-Planck Equation
    Mei, Shu-Li
    Zhu, De-Hai
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [4] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [5] Approximation of an optimal control problem for the time-fractional Fokker-Planck equation
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    [J]. arXiv, 2020,
  • [6] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    [J]. JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (04): : 381 - 402
  • [7] A new analysis of a numerical method for the time-fractional Fokker-Planck equation with general forcing
    Huang, Can
    Le, Kim Ngan
    Stynes, Martin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) : 1217 - 1240
  • [8] WASSERSTEIN GRADIENT FLOW FORMULATION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Manh Hong Duong
    Jin, Bangti
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1949 - 1975
  • [9] Numerical solutions for solving model time-fractional Fokker-Planck equation
    Mahdy, Amr M. S.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1120 - 1135
  • [10] NUMERICAL SOLUTION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL FORCING
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1763 - 1784