A Symbolic-Numeric Approach for Parametrizing Ruled Surfaces

被引:0
|
作者
Sonia Pérez-Díaz
Li-Yong Shen
机构
[1] Universidad de Alcalá,Dpto. de Física y Matemáticas
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Implicit representation; numeric algorithm; ruled surface; standard parametrization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents symbolic algorithms to determine whether a given surface (implicitly or parametrically defined) is a rational ruled surface and find a proper parametrization of the ruled surface. However, in practical applications, one has to deal with numerical objects that are given approximately, probably because they proceed from an exact data that has been perturbed under some previous measuring process or manipulation. For these numerical objects, the authors adapt the symbolic algorithms presented by means of the use of numerical techniques. The authors develop numeric algorithms that allow to determine ruled surfaces “close” to an input (not necessarily ruled) surface, and the distance between the input and the output surface is computed.
引用
收藏
页码:799 / 820
页数:21
相关论文
共 50 条
  • [11] Symbolic-numeric Gaussian cubature rules
    Cuyt, Annie
    Benouahmane, Brahim
    Hamsapriye
    Yaman, Lrem
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (08) : 929 - 945
  • [12] Symbolic-numeric integration of rational functions
    Moir, Robert H. C.
    Corless, Robert M.
    Maza, Marc Moreno
    Xie, Ning
    NUMERICAL ALGORITHMS, 2020, 83 (04) : 1295 - 1320
  • [13] Symbolic-Numeric Factorization of Differential Operators
    Chyzak, Frederic
    Goyer, Alexandre
    Mezzarobba, Marc
    PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2022, 2022, : 73 - 82
  • [14] What is hybrid symbolic-numeric computation?
    Kaltofen, Erich
    13TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2011), 2012, : 11 - 11
  • [15] Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration
    Iravanian, Shahriar
    Gowda, Shashi
    Rackauckas, Chris
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 410 - 418
  • [16] Mathematical Geosciences: Hybrid Symbolic-Numeric Methods
    Geist, Eric L.
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (07) : 3543 - 3544
  • [17] Generation and verification of algorithms for symbolic-numeric processing
    Kocbach, L
    Liska, R
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (03) : 367 - 382
  • [18] A Symbolic-Numeric Approach to Multi-Objective Optimization in Manufacturing Design
    Iwane, Hidenao
    Yanami, Hitoshi
    Anai, Hirokazu
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (03) : 315 - 334
  • [19] Analysis of network dynamics including hidden variables by symbolic-numeric approach
    Tominaga, Daisuke
    Tokumoto, Yasuhito
    Nakatsui, Masahiko
    Sun, Fuyan
    Miyake, Jun
    Horimoto, Katsuhisa
    OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS, 2008, 9 : 242 - +
  • [20] Symbolic-numeric sparse interpolation of multivariate polynomials
    Giesbrecht, Mark
    Labahn, George
    Lee, Wen-shin
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (08) : 943 - 959