Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration

被引:0
|
作者
Iravanian, Shahriar [1 ]
Gowda, Shashi [2 ]
Rackauckas, Chris [2 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] MIT, Boston, MA USA
关键词
symbolic integration; symbolic-numeric computation; sparse regression;
D O I
10.1145/3666000.3669714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most computer algebra systems (CAS) support symbolic integration using either algebraic or heuristic methods. This paper presents HYINT, a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Like the Risch-Norman algorithm, the symbolic part of HYINT generates an ansatz constituted of multiple candidate terms generated in parallel. The ansatz generator uses a combination of table lookup of integration rules and algebraic manipulations. The numeric part filters the candidate terms over the complex field and applies sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the terms in the ansatz. HYINT covers a larger range of potential integrals compared to the Risch-Norman algorithm. Moreover, the form of the final integral is similar to the integrand and consistent with what the users expect. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. We show that this system can solve many common integration problems using only a few dozen basic integration rules. We also discuss numerically-assisted symbolic integration, where HYINT acts as an ansatz generator for other symbolic integration packages.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [1] Symbolic-numeric integration of rational functions
    Moir, Robert H. C.
    Corless, Robert M.
    Maza, Marc Moreno
    Xie, Ning
    [J]. NUMERICAL ALGORITHMS, 2020, 83 (04) : 1295 - 1320
  • [2] Symbolic-numeric integration of rational functions
    Robert H. C. Moir
    Robert M. Corless
    Marc Moreno Maza
    Ning Xie
    [J]. Numerical Algorithms, 2020, 83 : 1295 - 1320
  • [3] What is hybrid symbolic-numeric computation?
    Kaltofen, Erich
    [J]. 13TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2011), 2012, : 11 - 11
  • [4] THE SYMBOLIC-NUMERIC INTERFACE
    FITCH, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1990, 61 (1-2) : 22 - 33
  • [5] Mathematical Geosciences: Hybrid Symbolic-Numeric Methods
    Geist, Eric L.
    [J]. PURE AND APPLIED GEOPHYSICS, 2020, 177 (07) : 3543 - 3544
  • [6] Symbolic-Numeric Integration of the Dynamical Cosserat Equations
    Lyakhov, Dmitry A.
    Gerdt, Vladimir P.
    Weber, Andreas G.
    Michels, Dominik L.
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 301 - 312
  • [7] Symbolic-numeric option valuation
    Mitic, P
    [J]. INNOVATION IN MATHEMATICS, 1997, : 337 - 344
  • [8] A symbolic-numeric silhouette algorithm
    Hirukawa, H
    Mourrain, B
    Papegay, Y
    [J]. 2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 2358 - 2365
  • [9] Symbolic-Numeric Integration of Univariate Expressions based on Sparse Regression
    Iravanian, Shahriar
    Martensen, Carl Julius
    Cheli, Alessandro
    Gowda, Shashi
    Jain, Anand
    Ma, Yingbo
    Rackauckas, Chris
    [J]. ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2022, 56 (02): : 84 - 87
  • [10] A HYBRID SYMBOLIC-NUMERIC COMPUTATIONAL METHOD FOR ANALYSIS OF BILINEAR SYSTEMS
    Tien, Meng-Hsuan
    D'Souza, Kiran
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 8, 2018,