Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

被引:0
|
作者
Xiangke Chang
Yi He
Xingbiao Hu
Shihao Li
Hon-wah Tam
Yingnan Zhang
机构
[1] Chinese Academy of Sciences,LSEC, ICMSEC, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
[3] Chinese Academy of Sciences,Wuhan Institute of Physics and Mathematics
[4] Hong Kong Baptist University,Department of Computer Science
[5] Nanjing Normal University,School of Mathematical Sciences
来源
Science China Mathematics | 2018年 / 61卷
关键词
integrable system; skew orthogonal polynomial; convergence acceleration algorithm; Laurent property; 37K10; 11B83; 65B05; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.
引用
收藏
页码:1063 / 1078
页数:15
相关论文
共 48 条
  • [1] Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property
    Chang, Xiangke
    He, Yi
    Hu, Xingbiao
    Li, Shihao
    Tam, Hon-wah
    Zhang, Yingnan
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1063 - 1078
  • [2] Coupled modified Kd V equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property
    Xiangke Chang
    Yi He
    Xingbiao Hu
    Shihao Li
    Hon-wah Tam
    Yingnan Zhang
    [J]. Science China Mathematics, 2018, 61 (06) : 1063 - 1078
  • [3] Laurent skew orthogonal polynomials and related symplectic matrices
    Miki, Hiroshi
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 259
  • [4] MCCOY PROPERTY OF SKEW LAURENT POLYNOMIALS AND POWER SERIES RINGS
    Alhevaz, A.
    Kiani, D.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
  • [5] Acceleration of convergence of sequences via orthogonal polynomials
    Laurie, D. P.
    [J]. Numerical Analysis and Applied Mathematics, 2007, 936 : 15 - 18
  • [6] On complexly coupled modified KdV equations
    Choudhuri, Amitava
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (04): : 709 - 718
  • [7] On complexly coupled modified KdV equations
    Choudhuri A.
    [J]. Pramana, 2010, 75 (4) : 709 - 718
  • [8] Discretization of coupled modified KdV equations
    Hirota, R
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 77 - 84
  • [9] ''Molecule solutions'' of coupled modified KdV equations
    Hirota, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2530 - 2532
  • [10] Soliton solutions of a coupled modified KdV equations
    Iwao, M
    Hirota, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) : 577 - 588