Discretization of coupled modified KdV equations

被引:25
|
作者
Hirota, R [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Informat & Comp Sci, Shinjuku Ku, Tokyo 169, Japan
关键词
D O I
10.1016/S0960-0779(98)00270-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coupled modified KdV equation partial derivative v(i)/partial derivative t + 3 [(j,k=1)Sigma(N)c(j,k)v(j)v(k)] partial derivative v(i)/partial derivative x + partial derivative(3)v(i)/partial derivative x(3) = 0, i = 1,2,...,N, is discretized in the form v(i.n)(m+1) - v(i.n)(m) + delta [1 + (j.k=1)Sigma(N)c(j,k)v(j,n)(m)v(k,n)(m)] Gamma(n)(m) [v(i,n+1)(m)-v(i,n-1)(m divided by 1)] = 0, i = 1,2...,N, Gamma(n-1)(m) = [1 + (j,k=1)Sigma(N) c(j,k)v(j,n)(m)v(k,n)(m)] Gamma(n)(m)/ [1 + (j,k=1)Sigma(N)c(j,k)v(j,n)(m+1)v(k,n)(m+1)], where Gamma(n)(m) is an auxiliary variable. We integrate the difference equation numerically and compare the results with exact solutions. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 50 条